NTIA Report 83-120

Optimum Reception in Non-Gaussian
Electromagnetic Interference
Environments: Il. Optimum and
Suboptimum Threshold Signal Detection
in Class A and B Noise

D. Middleton
A.D. Spaulding

US DEPARTMENT OF COMMERCE
Malcom Baldrige, Secretary

Susan G. Stuebing, Acting Assistant Secretary
for Communications and Information

May 1983






PREFACE

This is the second in a series of studies by the present authors which
addresses the critical problem of signal detection in highly nongaussian
electromagnetic interference (EMI) environments. (The first in this series
is the Report-0T-75-67, "Optimum Reception in an Impulsive Interference
Environment", June 1975, by A.D. Spaulding and D. Middleton, for the Office
of Telecommunications - U.S. Dep't. of Commerce [Ref. [1a]], subsequently
published in somewhat shorter form in the IEEE Transactions on Communications
in 1977, [1b].

Because of the recent development (1974- ) of effective, tractable
statistical-physical models of typical EMI environment ([2]-[10a]), which
provide at least the complete first-order statistics of the received inter-
ference (as it appears following the initial linear stages of narrow-band
receivers), it has become possible to determine and compare the limiting
threshold (i.e. weak-signal) performance of both optimum and conventional
receivers in such disturbances. The latter are found to be heavily degraded
vis-a-vis the former, because of the highly nongaussian character of these
typical telecommunication environments, where both man-made and natural
"noise" can and usually do predominate. Optimality is important, since
from it one can establish the Timiting behaviour of suitably designed re-
ceiving algorithms, as well as evaluate the performance of current subopti-
mum receivers. These results, in turn, are fundamental to the technical
basis of effective spectrum use and management. Included here as well, is
the aforementioned construction of adequate EMI models and the explicit
identification of the pertinent data bases required for both empirical and
analytic applications.

These studies accordingly focus on signal detection, with particular
attention to the structure of the nongaussian EMI and its "scenario", i.e.
propagation laws, source distributions, signal waveforms, etc., as well as
the corresponding (desired) signal scenario. In this way observables of the
EMI environment are directly incorporated into the results, e.g., optimum
signal processing algorithms, suboptimum procedures, and performance measures.



Among the many topics under investigation in this series are: (1), the
role of the interference class (Class A, B noise) on detection algorithms
and performance; (2), the effects of the EMI scenario on performance; (3), the
various matched filters appropriate to different propagation conditions for
the desired signal; (4), the effects of approximate or inaccurate EMI
parameter data on structure and performance (i.e. "robustness" questions);
(5), receiver structure and performance for varieties of digital signal wave-
forms in common usage; and many related problems, which one hopes to examine
as the work progresses.

Finally, it should be stressed that, although attention is directed
here primarily to (EM) telecommunication environments, the concepts, methods,
and results of this work are quite generally applicable to other communica-
tion fields and physical systems. This is a direct consequence of the canoni-
cal formulation of the detection problem itself, onthe one hand, and of the
canonical nature of the broad spectrum of interference scenarios encompassed
by the recently-developed non-gaussian noise or interference models on the
other. Consequently, it is expected that the approaches and results ob-
tained here should have impact well beyond the particular applications to
EMI telecommunication :systems discussed herein.
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OPTIMUM RECEPTION IN NONGAUSSIAN ELECTROMAGNETIC
INTERFERENCE. ENVIRONMENTS: II. OPTIMUM AND SUBOPTIMUM
THRESHOLD SIGNAL DETECTION IN CLASS A AND B NOISE*

by

David Middleton** and A.D. Spaulding***

ABSTRACT

In this second part of an ongoing study, the general problem of eptimum
and suboptimum detection of threshold (i.e. weak) signals in highly non-
gaussian interference environments is further developed from earlier work
([1al,[1b];[34]). Both signal processing algorithms and performance measures
are obtained canonically, and specifically when the electromagnetic inter-
ference environment (EMI) is either Class A or Class B noise. Two types of
results are derived: (1), canonical analytic threshold algorithms and per-
formance measures, chiefly error probabilities and probabi1ities of detection;
and (2), various typical numerical results which illustrate the quantitative
character of performance. Suboptimum systems are also treated, among them
simple cross- and auto-correlators (which are optimum in gaussian inter-
ference), and clipper-corre]ators which employ hard limiters (and are con-
sequently optimum in "Laplace noise"). The various modes of reception con-
sidered explicitly here include:(i), coherent and incoherent reception; (ii),
“composite" or mixed reception (when there is a nonvanishing coherent com-
ponent in the received signal; (iii), "on-off" and binary signals, as well
as varieties of fading and doppler spread.

* Work supported under contract (first author) with the Institute of Tele-
communication Sciences (ITS), Boulder Colorado, National Telecommunication
and Information Administration (NTIA) of the U.S. Dep't. of Commerce,
Wash. D.C. Work also partially supported by the U.S. Bep't. of Defense.

** 127 E. 91 St., New York, N.Y. 10028
***[TS/NTIA of U.S. Dep't. of Commerce, 325 Broadway, Boulder, Colorado 80303.



Both local optimality (LO) and asymptotic optimality (AO) are demon-
strated, along with the critical influence of the proper bias in the optimum
algorithms, which maintain their LO and AO character as sample size is
increased, without having to add additional terms in the original threshold
expansion (and thus produce insurmountable system complexity for the very
large samples required for effective detection of weak signals). It is
shown that for AO, as well as LO, two conditions may be needed to establish
the largest magnitude of the minimum detectable input signal which can be
permitted and still maintain the optimal character of the algorithm. In
addition to the more general Bayes risk and probabilistic measures of per-
formance, Asymptotic Relative Efficiencies (ARE's) are also included and
their limitations discussed. A number of numerical examples which illustrate
the determination of performance and performance comparisons are provided,
with an extensive set of Appendices containing many of the analytic details
developed and presented here for future use, as well.

KEY WORDS AND PHRASES:

Threshold signal detection, optimum threshold detection algorithms,
performance measures, performance comparisons, electromagnetic inter-
ference environments (EMI), suboptimum detectors, locally optimum and
asymptotically optimum algorithms; Class A, B noise; correlation
detectors; clipper-correlators; error probabilities; minimum detectable
signals, processina gain, bias, EMI scenarios; composite threshq]d
detection algorithms; on-off binary signal detection; non-gaussian
noise and interference.



1. _INTRODUCTION

Nongaussian noise and interference have been recognized for some time
[10], [10a] as an increasingly significant factor in the degradation of the
performance of most electronic systems and of telecommunication systems in
particular [la,b]. Both natural and man-made noise contribute noticeably
here, with the Tatter becoming the dominant component in most instances,
as time goes on. At the same time, most telecommunication systems -
specifically receivers - have been designed to be (approximately) optimal
against gaussian noise (both internal and external). This has been accom-
plished by means of "matched filters" ([11],[12]), whose particular struc-
tures depend on the mode of reception, i.e., on whether or not reception
is "coherent" of "incoherent" [Sec. 19.4, [12]]. Now, because of the
growing presence of nongaussian interference of all kinds, these conyen-
tional or "classical" (correlation) receivers are found to be badly degraded
0(20-50db) typically, and new designs (or "algorithms") for optimality are
accordingly required [la,b], [13].

Analytically quantifiable procedures for optimal signal processing at
all desired signal levels in arbitrary interference are not generally possible,
however. Thus, to obtain a "general" solution either one must restrict |
the class of signals and interference, mode of observation, etc., or one
must 1imit the approach to threshold signals, where now there is no restric-
tion on signal type and interference class. Such an approach is accordingly
canonical, [14], with several considerable adyantages over more specific but
less general methods. These advantages are: (i), an explicit operational de-
velopment of the required optimum signal processing algorithms (i.e. detection
or signal extraction); (ii), an explicit formalism for evaluating error-
probability performance directly in terms of the various first and second
moments of the processing algorithm (vis-a-vis the various hypothesis states
involved, e.qg. Ho: interference alone, H]: desired signal plus Tnterferenée,»
etc.); and (iii), a similar procedure for obtaining the performance of speci-
fied sub-optimum systems in the electromagnetic interference (EMI) enyironment.

Optimality here is expressed in the general sense of minimum average
risk or cost (i.e. Bayes risk ([12], Chapters 18,19), and in the more special
sense of minimum probability of error, or maximum probability of correct -




signal detection, etc., which is, of course, ultimately embedded in the

more general Bayes formalism. Of course, as the signal level increases the

signal threshold algorithm is no longer optimum, but it is still better

on an absolute basis than it is for very small signals. Moreover, it re-

mains better, in many instances, than the original suboptimum systems to

which it is often vastly superior in the threshold régime (as noted above).
For these threshold signals optimality is achieved under the strictly

mathematical condition of vanishingly small ‘input signé]s. In the prac-

tical cases, however, as we show here, effective optimality is maintained

as long as the small desired input signal does not exceed some upper bound

(itself small). [The desired signal is, of course, nonvanishing in all

practical applications.] These optimum threshold algorithms can be shown

to be optimum in two senses: (i), locally optimum (LO), i.e. essentially

yielding the smallest error probabilities for small signalseg(o<é<e<<]),

with finite sample sizes (n<~); and (ii), asymptotically optimum (AO),

where for these same LO algorithms, the error probabilities (or average

risk, more generally) remains minimal (and can approach zero) as sample-

size increases indefinitely (m). For the latter we emphasize that the

structure of these threshold optimum (LO) algorithms remains unchanged as

n+«, provided the correct bias, B;(e), is_employed. Without the proper

bias term in the threshold algorithm, the processing is suboptimum, and

moreover, is not only not LO but is also not AO. [These questions are dis-

cussed in detail in Secs. 2.4, 6.1, 6.4, and particularly in Appendix A3 ff.]
The concept of optimum threshold reception is comparatively venerable.

Perhaps the first exposition of the concept was presented for detection by

Middleton in 1953, 1954, [15] and [16], where the approach was to demonstrate

a series development the generalized likelihood function in various orders

of cross- and autocorrelation components, mostly non-linear in the received

waveform data. Among the important subsequent works are those of Rudnick in

1961 [17], who expressed the threshold detector in an alternative closed form,

more useful in applications, and that of Capon [18], also in 1961, who intro-

duced the notion of asymptotic relative efficiences (ARE's) for performance

measures.




A further important step, including these earlier advances and embedding
the overall approach fully in the Bayes formalism of statistical communication
theory ([10]; Section 19.4, Chapter 20, of [12]), was presented by Middleton
in 1966 [14]; (see also [21]). Thomas and coworkers ([21]-[24]) have applied
these methods, particularly to non-parametric receptioﬁ, since about 1965;
at about the same time Antonov [25], 1967, and a 1ittle later Levin and
his colleagues ([26]-[28], approx. 1969 and subsequently, used these con-
cepts for signal detection and estimation. More recently (1978), Sheehy
for example, has applied these ideas to acoustic signals. [See also [48]
for some recent observations on the current status of work in this area.]

In this present study we shall use Middleton's 1966 paper [14] as a starting
point for the derivation of specific detection algorithms and performance
measures, alone the lines, to some extent, of [la,b], and particularly, [34].

Although the general threshold detection formalism has been available
since 1966, cf. [14], its practical applicability has been limited until
recently because of the lack of physically realistic and tractable nongaussian
noise models. Most of the interference models suggested have been ad hoc
attempts to represent such phenomena, without sufficient physical basis and
analytic structure to apply generally. This difficulty was largely removed
in the mid-70's and subsequently, by the development of statistical-physical
models of interference, which are both analytically tractable and well-
verified by experiment, [2]-[9]. Specifically, first-order probability
distributions and densities have been obtained, with the model parameters
themselves determined analytically from the physical EMI scenario involyed
[81,[9], or empirically [6],[7], when such information is unavailable. These
models are canonical also, in the sense that the form of the results is in-
dependent of the particular physical mechanism involved, the principal con-
ditions being; (i), that the potential number of possible sources producing the
resultant interference be large, and (i1), that each source emits independently
of the others [cf. Sec. 3 below].

Two main classes of interference are distinguished: Class A noise, which
is "coherent" in the receiver in that it produces negligible transients there-
in; and Class B noise, which is alternatively "incoherent", producing essen-
tially nothing but transient responses. The former is non-impulsive, while
the latter is usually highly impulsive. Typical examples of Class A



interference are other, man-made telecommunications for the same channel

or spectral region. Similarly, automobile ignition noise and atmospherics
are common types of Class B interference, cf. [6]. We stress the fact that
these interference models, and their classification, are not 1imited to EMI,
but apply equally well (with different numerical values, of course) in
other physical areas where the same basic source conditions noted above
apply.

In the fullest formal sense these general signal processing algorithms
(e.g.'for detection and extraction) usually require nth-order statistical
descriptions of the interference. Fortunately, we can greatly simplify
the analysis, without serious loss in either methodology or performance,
by using independent (noise) samples. Such procedures are conservative, in
that they provide upper bounds on performance, in the sense of larger error
probabilities for given input signal levels and sample sizes, or greater
signal Tevels or sample sizes, for the same:error pnobabi]ftfes, etc. At
the same time we can now use the new canonical statistical-physical inter-
ference models noted above, to provide a truly realistic account of the EMI
environment in which our signal processing tasks are to be carried out.

Because the parameters of these Class A and B models are themselves
derivable from the underlying EMI scenario (i.e. source distribution, prop-
agation 7law and fading effects, signal structure, etc., (cf. Sec. 3 ff.), we
can gain further insight into the rdle of the EMI scenario on system perform-
ance, and from this predict how changes in source distributions, propagation
conditions, etc., may affect receiver operation. In effect, what we haye
done by introducing these physically-derived interference models {s to show
explicitly how the underlying physical mechanisms and conditions can in-
fluence system design and behaviour.

In our present study we shall confine our attention to threshold
signal detection in canonical Class A or Class B interference, reserying
the extension of the analysis to general signal levels along the 1ines indi-
cated in [1a]) for a subsequent study. Our specific goals are to obtain

(i). the optimum threshold signal detection algorithms for both
the coherent and incoherent modes of reception,
(ii). the associated optimum performance for these algorithms, and




(iii). comparisons with selected suboptimum receivers, namely, receivers
conventionally optimized against gaussian noise, viz. cross- and
auto-correlation detectors, and against impulsive noise, e.g.,
clipper-correlators.

(iv).  An important fourth goal is to study the effects of "mismatch",
i.e., when approximate or incorrect parameter values and/or noise
distributions are employed in system design and operation.

Accompanying this is the concept of "robustness": how little (or how much)
is performance degraded by these various types of "mismatch".

Most of the results to be achieved under the above are new, although
a few special cases have been obtained earlier [13]; also [1a,b]. In ad-
dition to the analysis, selected numerical results illustrate typical per-
formance situations in typical Class A and B EMI environments. Aldorithm
structure is shown in a number of "flow diagrams", which indicate the organi-
zation of the various operational elements.

Specifically, among the principal new results achieved here are the de-
monstration of asymptotic optimality (AO) of the (optimum) threshold algorithms,
when the correct bias is used, various explicit results for coherent and in-
coherent detection, including composite detectors when there is a nonyanishing
coherent signal component, and upper bounds on the minimum detectable signal,
required to preserve optimality of the threshold algorithm. Parallel results
for binary signals are similarly obtained.

This Report is organized as follows: Section 2 presents a concise oyer-
view of the general threshold theory needed for both matched and mismatched,
optimum and suboptimum systems, developed mainly from [14]. Section 3 sum-
marizes the pertinent statistics and EMI scenario and parameter structures
needed for the Class A and B interference treated here, based mostly on [6],
[9], [13]. Section 4 considers threshold detection algorithms themselves,
in detail. Section 5 treats "matched filters" and the operational inter-
pretations of these algorithms, while Section 6 examines the performance of
these various optimum and suboptimum detectors in analytic. detail. In Section 7
selected numerical results are obtained and discussed, for typical classes of
(desired) signal waveforms. Section 8 completes the work with a short dis-
cussion of both the principal general and specific results, as well as sug-
gested next steps in the analysis. The Appendices provide most of the



technical details, and the computer software, needed in the main text.

We remark, finally, that the calculated great improvement of systems
optimized properly to these highly nongaussian interference environments
vis-a-vis conventionally optimized receivers (i.e. against gauss noise)
stems fundamentally from the following conditions: |

(1), the fact that the former are adaptive systems, which sense the
(parameters of the) EMI environment currently with the the de-
tection process, and _

(2), the fact that the entire density function (pdf) is then suitably
employed to give the correct threshold algorithm, while the latter
remain sensitive only to second-moment statistics (which, of
course, are sufficient when the noise is gaussian).

The degree of improvement over conventional detectors depends, as
expected, on how nongaussian (in intensity and statistical structure) the
interference is. When the interference reduces to gauss, so also does the
(optimum) detector algorithm. again as we would expect. It should be noted,
however, that the degradation of conventional (simple-correlation) receivers
is greatly reduced vis-a—vis the optimum algorithm when (sub-optimum)
clipper-correlators are employed. Nevertheless, optimum threshold algorithms
may still provide a worthwhile improvement, 0(3-10db), over the clipper-
correlators, particularly when "composite" or mixed coherent and incoherent
processing can be employed. In any case, the results of an optimality
study are always needed in any effort to assess ultimate performance and
practical departures from it. Finally, recent additional studies [49-54]

are to be noted for possible extension of present work.

2.  GENERAL THRESHOLD DETECTION THEORY:

Threshold detection theory, as is well-known [14], is a general sub-
element of the Bayes, or (minimum) average risk theory of signal reception
([19],[12], Chap. 18, et seq.), and as such carries with it all the same
general statistical structure and concepts of the latter, more comprehensive
formulation. Moreover, the general Bayesian detection theory naturally
provides the starting point from which the former is developed. We begin,
accordingly, with a very brief summary of the general formalism for both

optimum and sub-optimum detection.




2.1 Remarks on General Detection Theory:
Optimum reception, and, in part‘cular optimum detection, is well-
known to require the minimization ¢” the probabilities of decision errors.

This is achieved (in the usual context of minimizing the average risk, or
cost, of decisions) by constructinc the "test statistic", or reception
algorithm, An(éjs). Here A, is thc (generalized) likelihood ratio, defined
in the standard way [Ref. 12, Chaptrr 18] by

(1) _ P<‘Fn(2(,|§)>5

Az 3 Fn X[0 . (2.1)

where X = (X1,...,Xn) is the set of n samples of received data; $ represents
the desired signal; ()S, the average over the signal or its (possibly)
random parameters, while p,q (=1-p) are respectively the a priori probabili-
ties that a received data set X does or does not contain the desired signal.
The quantity Fn(£|§) is the probability density function for the set‘i,

under the condition of the presence of a signal () in the usual fashion.

The optimum detection process, then, consists of comparingl\n (or any mona-
tonic function of Ag]}say, the Togarithm, log Agl))) with a suitably chosen
threshold, %, e.q.

. o . 0o (1)
decide H:. no signal present", if log An < log A

decide H]: “signal, as well as interference
is present", if tog A1) > 109 % J. (2.2)

Similarly, for non-optimum systems, the reception algorithm, or pro-
cessing of the data, is some (pre-determined) function, 9(5)’ and the de-
cision process has, Tike (2.2), the form

decide H : if g(X) < log K , e.g. noise alone (2.3)

decide H]: if 9{5) > log K, e.g. signal as well as noise, -

where now the threshold K is A (K), and usually K = a#, with a some (posi-
tive) constant. '



Performance is generally expressed as some linear function of the Type
I and Type II error probabilities, (a,8), e.g.

o log %
a = a(S|N) =flog%w1(g|0)dg ; 8= 8(N|S) = f_ wy (g[S)dg, (2.4a)

which for optimal systems, (minimizing average risk), becomes

w Tog %
a* =f w1(g*lO)dg* 3 B* =f w](g*IS)dg* . (2.4b)
]Og}(« -0

The w1 (g*|0) etc. are the (Ist-order) pdf's with respect to Hy H1 of the
optimum or suboptimum test statistic or "detection a]gor1thm", g = log Aé])
or g(X). The associated average costs or risks are (cf. Secs. (2.3, 2.4,
Ref. 20)

R =X (o*, %) = /20+p(cé])—C]“))(-;i ax+gr) = A0+Bo(2ufa*+s*) (2.5a)
R =X(ae) = Agrolci-ci) (Zare) = a8 (Kare) | (2.5b)
% = [c{-c {0 ]/[c <7 (=x.1) (0), (2.5¢)

so that system comparisons are then logically made on a comparison of R,R*
for the same thresholds K = %, where now n = p/q. The convention here is that

(J) = ngeg1s1on). the superscripts refer to the hypothesis state (Hj), and
the subscripts to the decisions actually made, and errors naturally "cost"
more than correct decisions. [For a detailed development see Ref. 12,
Chapter 19, Ref. 20, Chapter 2.]

The formalism above is adapted to the common situation where the alter-

native reception situation (Hypothesis H]) is a "signal and noise" as opposed

10



to Ho: "noise alone". In many telecommunication applications the choice
is between two types of signals in noise (or interference), and the test
statistic (2.1) becomes now for these binary signal cases.

al21) . PpF(XlSal0g A2 witn 4= Eqe 2010

no PR (XI5 04 st 2.6
i = 1,2;5(51) . 2.

The decision process (2.2) is, correspondingly,
. N 4 . cn s (21)
decide H]: a signal (S]) present in noise”, if Log An < log 7ﬁ2

decide Hy: "a signal (S,)present in noise", if Tlog AéZ]) 3_log‘ﬁ52 s
(2.7)
with '

%,=(csV-c{1) /(c{2)-c2)y (o0). (2.7a)

(It is assumed that all signa]s'{S1} are distinct ("disjoint") from all
signals {52}, so that there is no ambiguity in establishing correct and
incorrect decisions. When the signal classes over]apé however, modifications
in the cost assignments, i.e. the selection of the CgJ) above, must be made:
see Sec. 2.2, [20].)

Performance in the case of alternative signal classes is obtained as
above [(2.4), (2.5)], now with the obvious notational modifications:

109‘7%2 . .
w1(g( )lH])dg( )

o

() g0 = g5 5. f

(*) [ (*) (*)
g' 1(S11S,) = wy(g' /|H,)dg ) (2.8)
1152 ];_097(12 1 2

oo

n

(%) g(2)"

11



*
where g( ), etc. = g* (=log A£21)) or g , etc., and the various Wy refer
to the optimum and suboptimum detection algorithms and their associated error
probabilities.

2.2 Threshold Detection

Thus, in the detection phase of reception - which is always the ini-
tial, or acquisition phase at least - and usually subsequently - each signal
unit is to be detected, i.e., a decision made as to the presence (or absence)
of the signal symbol, to form a stream of decisions, generating the signal
sequence, which is then ultimately decoded into the desired message (pos-
sibly corrupted by interference, etc.). However, in the majority of prac-
tical situations, the explicit development of the optimum algorithm Agl),
or log Aﬁl), cannot be achieved, only approximated. Moreover, the evalua-
tion of performance, via the error probabilities (a*,8*), cf. (2.4b), is
even more difficult. Ingenious approximations are required, and even these
are not sufficient. Only by a literal (i.e. purely computational) realiza-
tion of A can we expect to obtain the optimum processor (as is sometimes
done. )

In any case, for the important purposes of predicting performance,
analytical methods, for all signal levels, are not generally realizable, and
we must (apart from brute-force simulation) seek other approaches. Fortunately,
as we have remarked in Sec. 1 above, it is possible to obtain canonical results
analytically, in the critical limiting case of weak signals, which, also
fortunately, is of very considerable interest, as it is the situation which
establishes the 1imiting performance, i.e., the best that can be done either
for optimum processors g(X)*, or for specified systems, g(X), which are
suboptimal. In general, the limiting, optimal algorithm for any interference
has been shown [14] to be (for additive signal and noise processes) the ex-
pansions of the (log) likelihood ratio about zero signal (6=0):

(1)

. ' 2)]+B. (o)*
N )y+trace(p ) 1+B, (9)*,

(2.9)

sn1s

Tog A & g(x)* = Tog u + 65" + 57 [F(e -3

~ ~S

12




where (cf. Sec. III, Ref. [13]):

6=J;g;.§.= [aojsjm b= <N2>, <N>=0\ s u= p/q
s'= [aOJ J/v 1s 65 = agS5 3 > (2.9a)

= <32>/w 3§ = [s(tj—e)] ; J

and s is a normalized signal wave form, such that <52) ; ag = input
519"31 ~to-noise power ratio; y = (N°) = (total) mean square noise (or in-

terference) power. Here, y and z are the column and square matrices

a..d . S.S.
—r_r 01 0j i . y= .
[y;1= [- 1og Wod 5 pg = [sis3I=L 7*1 s x4

3

J

[z ] = [ log W] = Z, (2.10)

N
i

ax X ;
J

with
CFalXIs)s = (i (-0 g5 Wy = Wy (X »

this last for the postulated additive signal and noise, so that wo is the
joint pdf of X (= V) when there is only noise.

Here B (e) [= 0(6 or o )] is a bias, which is determined from the
h1gher order terms in the expansion (2.9), averaged with respect to the
null-hypothesis, e.g. H : no signal. The (correct) bias is critical for
optimum performance in these threshold cases, where n>>1] necessarlly. [See
Appendix A3.] The resulting bias is also required to insure the consistency
of the test (H] Vs. HO) as sample size (n) becomes infinite (as 6-+0), or for
n<e, as 6=e=0. The quantity g(X)* we call the Locally Optimum Bayes Detector
(or LOBD), as it gives a Bayes or minimum average risk, cf. (2.5a) and
Appendix A3. | v

The general result (2.9) for the LOBD includes correlated samples, and
both incoherent and coherent reception. For the latter, strictly, we have

13



§j # 0, e.q. (%(t-e))efo, where € is the signal epoch vis-s-vis the ob-
server (receiver), which by definition of coherence, is now assumed to be
strietly given. At the other extreme, we have so-called incoherent recep-
tion, where §' = 0, e.g., (s(t-e)) = 0. In between these extremes, it is
possible to have what we call quasi-coherent reception, where w](e) is non-
uniform, such that (s} # 0, and may be sma]] but not ignorable compared
to the terms containing (5153} , i.e. 0(6 ), in (2.9). These distinctions
are particularly pertinent when dealing with narrow-band signals, where
now w](e) is defined over an RF carrier cycle, not over the whole duration
of the signal. [In such cases, feedback loops are often used to "lock-on"
from the initial instance of purely incoherent reception, to the eventual
stage of more or less exact phase tracking, which permits strict synchroni-
zation of the local oscillator of the receiver, with the RF phase of the
desired input signal. The result is then, of course, coherent reception,
vs. the incoherent reception that occurs when this "phase-learning" process

is not employed.]

The critical feature of coherent vs. incoherent detection is, of
course, the fact that the LOBD for the former is 0(6), while the latter
is 0(62), 6 << 1. The structures of the optimum threshold detector, or
LOBD, are then, respectively, [cf. Appendix A-I, also]:

I. Coherent Reception: (H] vs. H ):

(1)

coh g(x)& = [log u +B (8)% 1+ 6ys' , (2.11)

log Ay
while for the latter we have

II. Incoherent Reception (ﬁ] VS. HO):

I+ 9?-[9( )y+trace p_z], (5=0),
2- u\.wa WSW w
(2.12)

generally. For mixed modes of reception (i.e.

(1)

eine = [log w, (o)

Tog A = g(x)* ¥ e

inc

in which Bﬁ inc # Bn coh?
"quasi-coherent" cases), we must use a suitab]y modified form of (2.91, cf.

Appendix A3-6.
When there are two classes of s1gna1 to be distinguished, generally

14



according to (2.6), (2.7), the general optimum threshold algorithm (2.9) is

tog A1) - (1% g1, 1 ey, (1) (5(2) 52 51 5000y,

# trace (Ap(21)z)] = 9(21)* (2.13)
where now

Kﬂm)Eym&u>=ﬁg)%m_ggz%nj=ﬁg)_§nj

Al

21)

&(Z)VQ(Z) (1) (1) _ [<aoJ ¥ J(2) (2)> (a(l) (1) {1) (1)>] )

00 - %5 )
. (2.13a)

and §£21)* is once more a suitable bias to insure optimality and consistency

of the test Hy vs. H, here. This bias is obtained, as before [cf. (2.10)

et seq. and Appendix A-I] by averaging the next (non-vanishing) terms in the

expansion of log A(21) again with respect to H_, since log A(21) =

log A(Z) log A(]) is the difference of two "o;?off" detectorg, viz.

(
)

ek

3. ., 3.
109 UZ] 1og UZ] + <0(9(2) )>H;(0(e(]) ))Ho, or

n

4 4
o 0

}jz-l =S —T 5 — . (2.]4)

Thus, (2.11) and (2.12) now become, for S, Vs. Sy in the same interference
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I. Coherent Req;pt1on4js(] 2)740) H° Vs. ]l_

o2 (0% = Tog uyy#8F1 (@)1 + J(sP-gM) (2.15)
and
II. Incoherent Reception (§(1’2)=0): Hp_vs. Hy:
. (2.16)
o1 (0nc = 108 1y #8105 37 a0 P lyrerace(ao P00

The decision process is given by (2.7), with (2.13), generally, and with
(2.15), (2.16), respectively for the coherent and incoherent modes of recep-
tion. [Equations (2.11) and (2.13) apply in the "composite" or "quasi-
coherent" cases, when there is enough coherence (via phased-locked loops,
for example) to justify using both processing modes simultaneously, cf.
II-C (Part II), (la): These variants are reserved to a subsequent study,
cf. Sec. 8.]

Finally, for suboptimum detectors we have,

(21)(

g () = ¢ -aM 00,

O (2.7)

21 21 2
( )(§)1nc ( )(ﬁ)inc - g( )‘A 1nc ¢)1nc

with decision rules (2.7) on replacing log A£21) > g(Z])(é)* by 9(21)Q§), etc.
The decision process is, of course, carried out according to (2.3), (2.7),
with log A replaced by g*, cf. (2.9), (2.11)=(2.13), (2.15),(2.16).

2.3 Gaussian Interference

The threshold canonical forms of Sec. 2.2 readily reduce to the known
structures when the noise or interference is gaussian. This is easily seen
from (2.10) and the pdf
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1

- 5 Xky X
Uy (x) = ((2m)"2(cet k) /2y e ZONS (2.18)
where one has directly
Y
= -1 <7 = ol fy A
y= My Xyl s 2= [ axj] Ky (2.18a)

Thus, the threshold algorithms (2.10), (2.12) in the "on-off" cases
become

I. Coherent Reception (H] VS. Holi
g(0x| = [logwBy 11 48Ky s (2.19)
™ ~|gauss n gauss

II. Incoherent Reception (H, vs. Holi

* - - 1p0,-1 T n-1 -1
gauss
where
8.= [agys;ds of. (2.90) 5 pg ([0;851) = [(agya,5545]. (2.20a)

These results are just those (Eq. 20.7, Eq. 20.11a, [12]) obtained many
years ago for these gaussian situations.

Similarly, we find for the two-signal cases (2.15), (2.16), that the
threshold algorithms reduce respectively to
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I. Coherent Reception (H, vs. Hyli

W N AR L IS Ol A AL I (2.21)
gauss gauss

and

II. Incoherent Reception (H, vs. Hyli

21 2(21)% 1, m(2), -1 (2)y_ (1), -1, (1
( )(X 1nclgauss [Tog u21+Bé-i%c —-?{<§( sz 9( )>'<§( )kN 9} )>}]gauss
+ 51 f P Mgl (2.22)

with 0(2 = [<a(2) 2) (2) (2‘>] , etc. [Equations (2.21), (2.22) agree, as
expected with the ear11er resu]ts, Problem 20.12, p. 935, [12], and Section
20.4-5, [12], respectively, when the accompanying interference is gaussian
noise. ]

Thus, when the noise is gaussian, the resulting algorithms remain opti-
mum (LOBD's) with a generalized cross- or auto-correlation structure for the
processors, cf. (2.19)-(2.22). With independent noise sampling (ké'])=(dij)),
these algorithms reduce to the simpler specific LOBD structures A.1-24,25)
with the biases now obtained from {(4.9), (4.12).

2.4 Canonical Evaluation of Threshold Detection Performance:

By threshold detection we mean not only appropriately small input signals
vis-a-vis the accompanying interference, but also appropriately large obser-
vation periods, expressed as a suitably large number n'<n) of effectively
independent noise samples. Thus, for the LOBD, or g*, cf. (2.9) et seq., we
consider the quasi-limiting cases of "small signals" (62<<1) and large samples
(n>n'>>1), or equivalently, large time-bandwidth products n = BeT>>1.
Performance, in terms of the error probabilities (2.4b), is then found by
direct application of the Central Limit Theorem (cf. Sec. 7.7-3, [12]) to
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the detection algorithm, or test statistic g*. Accordingly g* is asymptotically
normally distributed, in the "on-off" cases (H] VS. Ho)’ with the first
and second moments]L

' 2
(* (*),2 _*
g »{(g" ) > var g* =0 (2.23)
e.g. * *x 2 *2 * x 2 *2
- (g*= (g% )°/2? -(g*-(9 Ju)) 1201
0
Wy (g*[H,) = 2 5 wy(g¥|Hy) % 2 -
2 2
21r03' JZHU’]" (2.24)

In fact, applying (2.23), (2.24) to (2.4b) for "on-off" detection (H]
vs. Ho)’ where the (conditional) false-alarm probability, of (or threshold

%), is preset, [the so-called Neyman-Pearson Observer, (Sec. 19.2-1, [12])],
we have

g*),-109 A g*),-Tog 7
a;lz-%{1+e[ < 2o 13 g% v 5{1-0l g;—ZJ—————— 13, (2.25)
03}72— cf’f/?'

so that the probability, Py, of correctly detecting the presence of a signal
is maximized to become

< >] < *>o 03 -1
Px = p(1-8%) o B{1ve ———2 - 2 07 (1-208)11, (2.26)
V2 o% 9q
1
on eliminating threshold . Here
2 [* -t -1
y = 0o(x) = ———f e "dt=erfx; x=0 (y) (2.26a)
™ J0

are the well-known error function and its inverse. [Equation (2.16) is, of.course,
equivalent to minimizing the error probability (g+8*), with oa=ok fixed.

T But, see the ultimate condition (2.29) ff, when for optimality c? - og, etc.
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Similarly, when the threshold is set to %=1, i.e. when (a>a*, g>g*)
are jointly minimized, we have the so-called Ideal Observer [cf. Sec. 19.2-2,
[12]], so that the total probability of decision error is

(9 >1 <9*>0
2 *

1

P& = PB*+qa* v —{1— po[ —— I+qo[ 13, =1, (2.27a)

9 20

0

which for symmetrical channels (i.e. p=q=1/2) reduces further to

3

PRGN S Ho

Px v 5{1- 500 T+ 5ol
€ sym e 2 V2 01‘ 2 V2 0“(’;

1}, X=1; p=g=1/2 . (2.27b)

The Neyman-Pearson, or fixed false alarm observer is appropriate to
the initial stages of detecting the presence of a desired signal, while the
Ideal Observer (X = 1) is the more suitable criterion (i.e. total decision
error probability) when particular elements of a signal are to be detected,
i.e. "marks" or "spaces" (in these "on-off" cases), in the course of message
transmission, where now P* is directly proportional to the bit-error rate.

Equations (2.23)-(2. 27b) apply equally we11 formally, for subopt1mum :
detectors, g(x): we simply replace g* by g, 01 ,0 by °1,0° PD’ p* by PD’

Pe in the above. Furthermore, we have exp11c1t1y for the averages (2.18)

(90,12 [ty h0¥dx + (hegug¥) (2.28)

with

wo (X [H )y = W XDy 5 wo(xIHy) = W(x-s)y (2.28b)

cf. (2.9), for the postulated additive signal and noise cases here.
The relations P§, Py, P%, Py, etc., (2.25) et seq., hold asymptoti-
cally for all input signal levels (as long as the number (n'<n) of effectively
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independent noise samples remains large). However, the LOBD's, g*, [(2.9),
(2.11), (2.12) etc.] are then no longer optimum, in the locally optimum

sense (92<<1, n'>>1), but can become drastically suboptimum as the input
signal level (v8) becomes larger. In keeping with the concept of the LOBD,
which is a truncated series developrent in 6, cf. (2.9), which depends on

the mode of observation (or reception) i.e. coherent or incoherent [cf.

(2.10) et seq.], we must be similarly consistent with respect to the ap-
propriate power of 6 in determining the above probability measures of per-
formance. Because of the asymptotically optimum (AO) conditfon, cf. Appendix
A3, which determines the bias B*(e) as the average of thé next highest -non-
vanishing (H -) average in the series development log A =g*+ .., cf. (2.9), we
must 11kew1se require that 0?2 c*2+F (e or 62) where . F*<<1 This (AO) condition,

|Fﬁ(e or ez)l << 032 s & of = 032 , n>> 1, (2.29)

in turn, requires that the input signal level remains appropriately small,

to insure that g* (=LOBD) is indeed "locally optimum" and asymptotically optimum.
We can make the condition (2.29) somewhat more explicit by considering

for these additive signal and noise cases (2.28p) the expansions

MY (CORRURIEER LT

%
t 5 () *5u /WD st s kE12, (2.30a)
so that
“Tz - °32 *Fp 032 , | (2.30b)
and
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o PR s 50[2<g*>0 g*sw /wn>o ((g* %gwn/wn> ]

2
a
- [{(g*) %fw;s/w Yo,s -2(g*), <§*sgn/w Do) +0(a ) << 0*2 , (2.30c)
with
O )J-*'—[——‘“’E—— 1, etc (2.30d)
‘wn = BX W X-la o,xn 9 ‘wn = axiax:j Wn s e . .

Thus, for coherent reception the first term of (2.30c) determines the re-
qu1red smallness of (a ), while the second term supplies the needed condition
on (a ) in the 1ncoherent cases (since,(2.30d),5=0 then, etc.). Suboptimum
a]gor1thms, g, are handled similarly, with g* -~ g in the above. We shall
encounter explicit examples of F¥ << 1, (2.30c), later, in Section 6 ff.

In any case, (2.26) and (2.27b) now reduce to

(*)y _ ¢ (%)
p{*) i%ghe[(g ) (f? 2 —0'1(1—2a§*))]: ) (2.31)
% <o CICLY
(*) (* e
(*) <1 ‘ 1 <§ ) <§ > }
Pe i"-?(1"79[/500(*)]+'2'@[/-2-00(*')o] u=’ . J (2.32)

Here, super (*) denotes optimum by super * alone and suboptimum otherwise,
i.e. a blank superscript.

For the common telecommunication situations involving the "symmetrical"
2-signal situations Ho: So+N vs. Hy: SyN, cf. (2.13)-(2.17), performance . is
ca]cu]ated as above with the help of (2.8). Now, however, we have o* - B(])*,
g* BS ;K»-k&z, cf. (2.7), (2.7a), and (2.24) is appropriately mod1f1ed
g* - 9(2) » (2.13) et seq., Hy > Hys Hy > Hyy no>> 1. Thus, for example,
(2.32) 1is extended to
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1), (2)(*) GRS,
p (%) 1§1-p29[<9 ): \;<9 217

e =7 g /2_0‘1* I P® W]; » Mp1 = Po/Py 5 PRy ?2133)
()2 ()2 : - 2 i

where o5 1 vy 7 and the higher order terms in o(or 6“) are dropp?g];?*ghe

means and variances, consistent with the order of development of g s as

explained above in the case of the "on-off" detection algorithms, cf. (2.29).

We shall see some examples of this in Sec. 6 ff., as well.

Finally, the explicit evaluation and comparison of threshold performance,
by LOBD's (g*), or specified sub-optimum systems (g), may be effected by
comparing PB VS. PD’ or P; VS. Pe’ for the same perameters: observation
time (= sample size n), input signal-to-noise ratio 6(=a‘f€§? , or ag )
and input signal and noise levels, etc. Comparisons may also be made using
the associated error probabilities (a*,8*), or (o,B), in the Bayes and average
risks (2.5a,b). Other useful ways of comparison include calculations of
the various Asymptotic Relative Efficiencies (ARE's), and Efficacies, cf.
Appendix, [14].(See also, p. 921, of [1a] and our remarks in Sec. 8.) [In
addition to the results of Secs. 6,7 here, examples of comparisons based on
the error probabilities are also given further in [la], [13], [14].]

3. A SUMMARY OF CLASS A AND B INTERFERENCE MODELS: 1st-ORDER STATISTICS:

In this section we provide appropriate first-order statistics of Class
A and B interference. This includes the general EMI scenario, from which
the principal parameters of Class A and B models may be calculated, as well
as a rather general desired signal scenario, which encompasses most practical
applications.

We shall henceforth approximate the general threshold theory [Sec. 2] by
restricting the analysis to independent noise or interference samples (n).

As explained in Section 1 above (and as we shall see in Secs. 4-7 subsequently),
this greatly simplifies the analysis, without significantly affecting the
results. Moreover, it permits us to use the recently developed (and experi-
mentally verified, [5],[6]) first-order probability models of Class A and B
interference, which canonically describe most classes of noise and interference.
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3.1 Desired Signal Scenarios:

The desired signals are here narrow-band input waveforms;*which appear
likewise as narrow band signals at the output of the front-end stages of
the receiver, i.e. before any subsequent Tinear or nonlinear processing.
These desired signals often have the same generic form as those producing
the interference (in Class A cases). One has explicitly (in sampled form)

a,110%(t,0)
S(thg') = [%—-——— cos[mo(tj-e)-(ps(tj)-%]] = [agg5;4] »
d
cf. (2.92), v= Iy (3.1)

where y(z IN) is the mean total noise intensity (measured aE the same
point in the receiver as the desired signal). Here rq = rD/ro = cox/ro

is the normalized distance of the source to the receiver, o is the
normalizing distance, o = speed of propagation, so that A is a distance
measured in units of time (secs.). The quantitygﬁ is a dimensionless scale
factor embodying the effects of fading.

In an alternative form we may write (3.1) as

a:G (t:s9)

A_.
_ 237 ] ) A
S= [ X cos[wo(tj-e)-¢j-¢o]] = [ay; sjVE] = [;%;'S(tj-e)] (3.1a)
where now
-3 ]/2"y Y
Gy (ts0) = I (ts0) " “ri/cy » (3.1b)

and the "mean amplitude", A_, over the sampling period t ,T0+t0) is obtained

0
from

0
f s(t)2dt . (3.1c)

* The canonical theory is in no way limited by this practical condition,
cf. (2.9) et seq.
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The normalized signal waveform (sj) is likewise defined by (3.1a) with the
help of (3.1c), cf. Sec. 19.4, [12], Eq. (19.49).

In many applications digital signals may be used, with no significant
amplitude modulation, so that G0 and fos are no longer time-dependent. Thus,
we can write (3.1a) as

a,6¢)/V2 AL
= | [ e)edm IS .
2 [[ N ] 2 cos[ug (t;-€)-9; ¢0]]- [ = s(tJ €)] [aonJJE],
(3.2)
which defines the normalized signal S5 now by
= - - - - = ,Y

so that (s? )e = 1, as required.

Since the location of the desired signal source is not necessarily
known at the receiver, A is a random variable, as is the fading parameter
a, and the beam-pattern function, GO(¢),as well. For most observation
periods Rayleigh fading is the expected mechanism, e.g., a obeys the pdf

w](a) = == ,a>0. (3.3)

The average effects of the (resolvable) multipath are determined by the
value of the propagation exponent (y), which, for example, is usually
larger than unity for rough terrain, e.g. vy = 2 is an often-used empirical
value; (y need not be an integer, however). Moreover, the desired source
may be moving (comparatively slowly), so that its location vis-a-vis the
receiver is described by a random walk pdf of the form [30], [31]
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2 pl

w](rd) Zrde "d"oa I (2r rd), (rd’roa > 0), (3.4a)
or
2c§ -\ (c /r‘o)2 ga
w](x)S 2 Ae I (2roacoklr ) (roa,x>~0). (3.4b)
o

When the source is not moving, but its location is unknown to the re-
ceiver, the pdf of its Tocation can be usefully expressed alternatively by
the density function [9],

wi(A)g = BUA1'“dxw1(¢)d¢ i B = ——2—:3?_—;; (0<)a

(3.5)
for the simple geometry of Figure 3.1, where the possible location of the
source is in the region Ag. Other, more complex geometries may be handled
in the same fashion, but this rather simple model often gives reasonable

and representative results.
w ()

311
pis e
<
~
>
~

-~~~ -~

Figure 3.1. Schema of w](x), w](¢), Eq. (3.5); uo(zxo/x]) ratio of inner to
outer radii.
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3.2 EMI Scenarios: Calculation of Parameters:

The EMI scenario describes how a typical interfering source radiates
and where it is located (statistically) in a domain (AI) of such possible
sources. It also provides an explicit structure for the resulting, typical
waveform as seen following the linear front-end stages of the receiver.

The scenario is fundamental in determining the explicit structure of the
various distributions of the EMI itself, particularly when strictly canoni-
cal conditions do not hold, cf. [32], for Class A as well as Class B inter-
ference, Equally important, the EMI scenario allows us to calculate the
principal parameters of these distributions, as we note below, cf. (3.10) ff.

The (first-order) EMI scenario is specifically defined by:

~ (i).  the propagation Taw [x™7, cf. (3.1a)], v>0 ;
(ii).  the distribution, og, of sources in Ar; here
Og v )\-NW] (¢)3
(ii1). the statistics of the fading parameter, a, cf. (3.3),(3.1);

(iv). the average emission characteristics of the sources, as
embodied in the "overlap index" AA’ AB H
(v). the structure of the wave-form-beam pattern factor

(3.6) < Go(t’¢)=|52RT(¢)|buo(t,9j) s

cf. (2.17), [6]

. where LZRT(¢)=composite source (T)-receiver (R)

beam patterns,
Uy =normalized basic interference waveform
ﬁ in linear receiver output, before "pro-
cessing";
~ b =appropriately dimensional parameter.

~ (vi). the statistics of any other pertinent parameters in
the typical source model.

For the interfering sources we use (3.5) again, where AI now is not

necessarily the same domain as that for the desired signal source, AS;
Fig. 3.1 shows a typical domain. [We simplify without serious loss of
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generality, by writing os(x,¢) = cs(x)cs(¢) here.] Note, for example,

that =0 corresponds to a uniform source distribution OS(A,¢) = oos/AlJ = 0o
Specifically, the envelope of a typical source at the output of the front-
end stages of the receiver (to the subsequent processing) is

aG,(9,t)

BO = __-;\_Y___ , cf. (3.]) N (307)

where now the scenario (3.6) applies.
The global, or "macro"-parameter of Class A, or Class B, interference
are 7 = {A,2,,T"'}; o, defined by

( AA B - "overlap index" = (av. no. of interferfng sources emit-
ting at any given instant) x ( av. duration of a typical
emission);

_ "y'4 _ . . . _
Qpp T [A<Bo>/2]A,B = mean intensity of the nongaussian com

(3.8) < ponent of the EMI;

FA B = [oé/QZ]A B = gaussian factor, or ratio of the mean
intensity of the gauss to the non-gauss component of
_ the EMI;
- 2 - . . .
g IN’A 5 = (92+0G)A’B = mean total intensity of the interference.

The gauss component is itself a sum of two components:
of = of + of (3.9)

the one due to (many) unresolvable external sources (oé), the other, to
receiver noise, which appears largely in the initial (1inear) stages of the
receiver.

From (3.5)-(3.7) we can now readily calculate QZ,F', and EN‘ Thus,

we have
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;§<G§> :

Q, = A —_ . (3.70)
I A
where <62} = <F2> etc., cf. (v), (3.6). From (3.5) it follows that
0 0 ¢’ 9 ! 9 . .
2 (2) _ 2 1022 e o2
N = =_¢-u_ (0 NS Gl VNla -
<1/x > h Cu,Y 2y+u-2(1_a2-u ) %o Mo % = Ao/xl (3.11)
0
with (u,y > 0). Similarly, r* and I, cf. (3.8), become
—— i 2
Vo 0 2 2 .2 ~(2) . _ 2 a° .(2) , 2

for Class A, or B interference. Clearly, the geometry and other elements of
the EMI scenario strongly influence the magnitudes of these "macro"-parameters,
cf. (3.8), and as we shall note below, the specific structure of the associated
probability distributions.

Finally, we remark that more complex channel characteristics can be
introduced, i.e. scatter channels which introduce spreading in frequency and path

delay of both the desired signal and the interfering signals which may be
developed along the Tines of [3], [35], [36], and in a much more general
way, by Middleton, in [37], [38]. For the 1st-order EMI's no correlation
structures appear (we assume independent samples, or equivalently, noise
samples taken outside the (rms) delay and frequency spread intervals). On
the other hand, the correlation structure of the signal is preserved in
our processing, so that the effects of channel "spread", if present, will
modify the received signal. (We reserve the analysis to a later study.)

3.3 Probability Densities (of the Instantaneous Amplitudes):

It has been shown [32] that the EMI scenario can noticeably influence
the form of the pdf (and APD) of Class A and B noise. We summarize the per-
tinent results established elsewhere (Class A, [32]; Class B, [5], [6]):.
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I. Class A Noise:

There are two principal developments for Class A interference [32]:
(1), the "strictly canonical" forms, which correspond to source distribu-
tions where the potentially interfering sources are either equidistant, or
approximately equidistant, from the receiver; and (2), the "quasi-canonical
cases, where the sources are widely distributed in space and g_or_go is
rayleigh distributed. For the former we have the following expression for
the first-order pdf (needed subsequently for locally optimum processing
algorithms and performance, cf. Secs. 4-6):

(1). Strictly Canonical Class A pdf:

2 ~
w AM X740,

-A
A A e
Wl(X)A+G = e ZO = = . (3.13)
m= J 4no )
where
np WA, 2 X
265, = ——— ; T! =05/ : X = . (3.13a)
mA ]+PA A G' "2A VEEKTT:FXT

Equation (3.13) is also appropriate for the "approximately" canonical cases,
where the source distribution is no longer confined to sources equidistant
from the receiver; [for details, see Sec. 5 of [32]1.

(2). Quasi-Canonical Class A pdf:

\ .
w(x). e n (Ar3)" [ de
1Y/ A+G m!

22,5 2
-xd /40om

+5(°)(xd/2oom) . (3.14)

m=0
4n00m

where the "correction term" %(0) is specifically
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w Na
+(0) _ : (-1)" c._d r(1+ %) | . n

nl m’n 3+a . 2\a/2
n=1 44“0(2)m /r 21"( )(ITH'I‘AAAd )
-X d /40
e on F (- %512 x2d2/4o§m) , (3.14a)
and where
g WA, ., 2 < 1, (3.14b)
20 0m = 1+PA 3 Ty = Tpd” 5 d ag<<l ~ 2= " _(2-a)y (>>1)
0
2- _ _ m!
(O<)a = ——Yl (<2) s OLO = )\0/)\-', mcn = m-n)InT ° (3.]4(:)

jn which (u,y,ao) are parameters of the EMI scenario, cf. Sec. (3.2) above, and
9 is a numerical scaling factor obtained by a suitably analytic "fitting" pro-
cess, described in Secs. 7.2, 8.4 of [32].

For Class B interference we have, similarly ([6]1,[13],[33]):

II. Class B Noise:
Here'we use a simplified version of the general first-order case [6],
which involves only three parameters, instead of the usual six. Moreover,

we assume a limiting form of the EMI scenario, where now % (=10/A]) -~ 0,
e.g. A, = 0, cf. Fig. 3.1: potentially interfering sources can be effectively
co-located with the receiver. This permits a considerable mathematical
simplification of the resulting pdf [6] but, in turn, gives a distribution
for which none of the moments exists (because the intensity at a point source
is infinite, in such models). This defect is readily overcome in practice
by truncating the pdf w](x) at sufficiently large amplitudes (x>>1),
equ1va1ent1y, at sufficiently small values of the APD (P1 = fwa1(x)dx),
[cf. Fig. 1, [33] and discussion therein]. [For the more complete model
(still with A0=O, but suitably approximated at large x to insure finite mo-
ments, see [5]1,[6]1,[13].]
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The appropriate pdf here is thus [from Eq. (2.10a), [13]], a

(3) (Quasi-Canonical Class B pdf (o ~»0):

o
e 1) an _ notl no .q,5..2
w'l (X)B+G ,'_\'_ e Z nl AOL r( 2 ) ]F'l(" 2 ’1/23)( /QB) L] (3.]5&)
B
or
1% 1 nan o+l T+na 2
v o= DM r (MY R (5 1725 -xS/9,) , (3.15b)
/g =0 n? otz P12 B

where o is given by (3.14c) and

g = 22 GB/NI , (3.16a)
and

A= A/2°G = by Ag/I 23 ( %y )]“/2 (3.16b)
with

= ' ‘ (3.16c)
o WRMH%)«E)>

A, = 2%y Ag/[20, (1413) 1% 5

GZ (4 o

g = (o5 * Tp)/4(i+rg) .

(It can be shown that ffww](x)A+de = 1, from the series development of 1F],
etc., and moreover, that W1 > 0, all x, as required of a proper pdf or directly
from the characteristic function, (2.38), [6], with (A+0,») therein.) Thus,
this model has three parameterS'PéB = {A »0p »a}. The parameter 2 is a nor-
malizing parameter (through Np- in (3. 16a), cf. (2.11c), [13]). As before,

the "macro-parameters" (AB,QZA,F ) are defined precisely as in the Class A
cases, cf. (3.8). In practice, one uses a value of ag which normalizes
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the x-process to the measured intensity of the process, since the analytical
second moment does not exist, for the reasons explained above. Although

the more complete model ([6],[71,[13]) removes this difficulty, using (3.15a)
in conjunction with empirical data does not at all Timit the applicability
of this simplified Class B model.

4. OPTIMUM* AND SUBOPTIMUM THRESHOLD DETECTION ALGORITHMS:

We now return to Section 2.2 above and consider both LOBD and selected
suboptimum threshold detection algorithms, under the simplifying assump-
tion of independent noise or interference samples. The correlated or
"coherent" structure of the desired signal is, of course, preserved, since
it is a critical element in enhancing the signal visfé—vis the noise. For

the suboptimum cases here we choose three types: I, correlation detectors,
which are conventionally optimum when the noise or interference reduces to
the gaussian; II, LOBD structures, where, however, there is a mismatch
between the algorithm selected and the critical class of interference in
which the desired signal is being received, or where the estimates of the
noise parameters are noticeably imprecise, or both. And III, where corre-
lation detectors (already suboptimum in nongaussian noise) are used in
similar "mismatched" situations.

We begin with the optimum cases:

4.1 LOBD Detection Algorithms:
From (2.11)-(2.16) we obtain for independent (but not necessarily sta-
tionary) noise samples the following results '

I. Coherent Reception (H] VS, Holi

~ n
g(x)* = [log u + BX .7 - j_z,_] (aojsj) 2 s (4.1)

* See Appendix A-3 for a demonstration of the optimality of the LOBD and
associated conditions; cf., also, Sec. 2.5, above.
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where now

_ _rd .
R,J. = Q(Xj) = [ dx 1og w](leO)]x=x§ H (4.23.)
and
19 (@ 2
BY coh =~ 7 ; L§ )<éoisi> ,  cf. Eq. (A.1-16). (4.2b)

Similarly, we get

Ia. Coherent Reception (H2 VS. HLLL

oD = Dos vpsi N1 - 1 1GE-6ef Dy, e

where

(2 1732 )5 (2) (Ns(IN2y cr. (a.2-a5 4.3
B 5 g {<é > <' Y1 cf. ( ). (4.3a)

n-coh

[The explicit structures of the various bias terms are derived in Appendix
A-1.]

II. Incoherent Reception [ﬂ1 vs. H J:

40_;
g(X):‘nc [Tog u + B; mc z [R, 2, + JZ,_IcSU](am OJSISJ> (4.4)
where
_ 1t (4)_, (2), (2) (2), (2)
B;l‘ inc- "8 ZJ {amao‘] J> {[L —2L_i Lj ]&ij+2Li Lj 1, (4.4a)

cf. (A.1-20a), and

34




ITa. Incoherent Reception [H, vs. H]Ji

(2])(x):nc = [log “21+B£21%c] tar Z (252 +2161J)[<(ao1a035153)(2{>
<(301aOJS1SJ)(])>] ’ (4.5)
where

21)% . 1 0 2)_(2)_(2)_(2) 1).(1).(1
g(21) _gzj{<§1)()§)(> <a () )()>

n inc
2
({2 (?) )aij+2L§2)L§2)}, (4.5a)

from (A.2-5ab), andagain, the bias terms here are derived in Appendix A-1.
The quantity 2% is

2
. . _ d _d _ . . s, g
25 =% (xi) = ['af 8= log wl(x|Ho)]x=x. ; with Gij—l, 1=33=0,1#] .
dx 1 (4.6)

4.2 Selected Suboptimum Detection Algorithms: (Simple- and Clipper=)

Correlation Detectors

We begin with the simple or undistorted coherent (i.e. cross-) cor-
relation detectors, and the corresponding incoherent (or auto-) correlation
detectors, which are (threshold) optimum structures when the noise {is
gaussian [cf. Sec. A.1-3], and which may be optimum at all signal Tevels
when special conditions at the receiver so warrant. [For a discussion of
specific examples, see Sec. 20.4-1, [12], Secs. 2.5, 2.6, [20].] For in-
dependent noise samples we obtain [from Sec. (2.3), for instance, or Sec.
A.1-3):
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I. Simple-Correlators:

A. Coherent Reception [H vs. H ]:

9(x)c = Biop * Z (aOJ Py s (4.7)

B.  Coherent Reception [H, vs. H}li

coh

21 _ 21y, O 2) 4 1
9( )(39C - gl jzl [(aojsj)( )-<a0jsj ( )]xj , (4.8)

where the biases are now [cf. A.4-22] specifically

n n
' = ' (2]) = _]_ ' (2)
BCOh log p- Z: J j ) BCOh log 1121" 2[ JE]{ <(aOJ J) >
- (1)y2,4. (4.9)
<(a0jsj) > ]
Similarly, for incoherent reception we have
C. _ Incoherent Reception [H, vs. H 1:
g(f)inc B B1Inc §:<601 0J 1SJ>X ; (4.10)

D. Incohérent Reception [H2 vs. H.J:

n

(2])( ding = Biag” +%’izj [{(a 0i%§°i J)(2> (CFLIFEICS )(])MX Xy 2

»’inc inc 0i 0j7i%]
(4 11)

and from [A.4-55] the biases are found to be explicitly

<501 on1sJ>2 (4.12a)

s

: 17 2.1
Bing = 109w -3 jz <ka0J it/ e
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nc

' n 2 2 n
8{21)" < 14 “21'%j21{<9§2’>-<9§” » _%_i;j[<e§z)e§z)>z

~eselNT (o = a5 ete). (4.12b)

For the energy detector, cf. (A.4-61a), (4.11), (4.12) are simply
modified to

gEnergx}:

n
o209, = 8"+ 1T 162158 B)- s yé (5120
i
with the bias

52" < Tog uyy- 3 1) (6 7] (6 ><e(”>) (4.12¢)
1

This shows, as expected, that for detection here, the signal energies must
be different, and the larger the difference, the better the discrimination
between the (1) and (2) states.

IT. Clipper Correlators:

From Secs. A.4-3,4 we may write specifically the (suboptimum)
detection algorithms when "super"-clippers are used in the correlation re-
ceivers, in contrast to the situation above (I), where there is no distortion.
We summarize the results:

A. Coherent Reception [ﬁq VS. Holi

n n
g(f)coh = logu - V2 ; (ei>2w1E(0)i + /2 ; <ei> sgn X; (4.13)
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B.  Coherent Reception [H, vs. H]li

n n
0?00, = 109 w - 72T [(o{PY2- G { YoM (004 ] [<91(2))'<e1m)]59" X; -
1 1

(4.14)

Similarly, for the incoherent cases we have

C. Incoherent Recepjjon;[ﬂq VS. Heli

n n
9(8)ine = 109 v = L (D2 mgl0);) - 7 1‘zj<e1-ej>2[8w1E(omE(O)J.
-{VZ Wy (0), + 8w]E(O)§}al.j]
n
+ 0.6.)Sgn X: S , (4.15)
g% ( §05759n X5 sgn x;

and for binary signals:

D. Incoherent Reception [H, vs. Hyl:

n 2 2
02010 = 108 1 L 1(e{))-6{N D102 e 0133
n
X 1,23_ [<(919j)(2)>2-<(61.ej)(1)>2]{8w]E(0)1.w1E(0)j

-[72 wy (0)+8wy (0576, 5. (4.16)

In the above w]E(O)i is the (jth-) value of the noise pdf (A4-50b) when

X; = 0.
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4.3 Selected Suboptimum Detection Algorithms: II-Mismatched LOBD's.
Here we indicate "mismatch" by the following device: from (4.1), (4.2)
we write

_d
zj > (leE)j = gx 109 wl(leo)D|E , (4.17)

where D|E denotes D-class parameters, or parameter estimates, D=D', when
the pdf of x is chosen (correctly or not) to be E-class. Thus, we have
the following varieties of mismatched and matched conditions:

TABLE 4.1. VARIETY OF MISMATCHED AND MATCHED CONDITIONS.

Parameter !Selected Class

Values (D)= 'of Interference Remarks
'(E)=
+

1). D LD Exact (or "true") parameter values are used
' in the same postulated class of inter-
: ference.

(la). E i E Same as 1). E#D, or E = D.)

2). D' ! Class D estimates, D' (#D) used in same
: postulated Class (D) of interference

3). D . E Class D (exact) parameter values used in

: i chosen Class (E) interference.

4). D' bE Class D estimates (D'#D) used in postu-
: lated Class E interference

[Interchanging D and E clearly introduces no new forms of relationship. Later,
when performance is to be evaluated, along the lines of Sec. 2.4, we shall
need to relate the category (E) to the actual, or true, statistical situa-
tion, with respect to which the various averages of g*, g, etc. are to be
taken, cf. Sec. 6 and Appendix A-I.]

Accordingly, the various possible mismatched threshold detection al-
gorithms follow directly from (4.1)-(4.6) on replacing 2j therin by zDIE'j’
etc., and, correspondingly, g* by the now suboptimum forms gDIE’ subject to
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the combinations of Table 4.1. The bias terms in the LOBD's remain unchanged
here. The (generally) suboptimum correlation detectors are not affected by
the actual or assumed classes of parameter values or interference statistics.
Finally, in all cases, the complete detection algorithm requires that
the number(s) produced by the processing algorithm (g*,g, etc.), as given
specifically in Secs. 4.1, 4.2 above, be compared against the appropriate
threshold log %, log K, log 7{(21), cf. (2.2), (2.3), (2.7) respectively:
if the threshold is equalled or exceeded, we decide H] (or H2): a signal
(or signal 2) is present: if the threshold is not exceeded, we choose the
alternative (i.e. null, HON, or signal 1 cases. We shall give explicit
examples in Section 7 ff.

SECTION 5. MATCHED FILTER STRUCTURES: INTERPRETATION OF THE ALGORITHMS

From the earlier analyses of [20], Chapter 4, and the Appendix therein,
we can establish matched filter structures for the linear portions of the
threshold signal processing explicitly indicated in g,g* for both coherent
and incoherent reception cf. (4.1), (4.4), (4.7), (4.10) above. This is
important because such structures provide a guide to the actual realization
of the physical entities which are needed to carry out the indicated pro-
cessing, either directly as a computational program, or much more conveniently,
usually, by building the specialized mini-computer which represents the
operations involved, perhaps in chip form, etc. In the case of specific
examples, we shall confine our attention here (in the incoherent cases ex-
plicitly) to the important special cases when the desired input signal is
narrow-band, the usual situation in telecommunications practice. We con-
sider again the coherent and incoherent cases in detail for the frequently
encountered "on-off" (i.e. Hy vs. Ho) detection situations. Corresponding
results for the two-signal (H2 VS, H]) are summarized in Sec. 5.

5.1 Coherent Reception (H] VS. Holi

Here we have the situation shown in Figs. 5.1a,b, for both optimum and
suboptimum (i.e., cross-correlation detectors). First, in the optimum case,
the input sampled data {xj} is non-linearly processed, to yield yj=2j, cf.
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(4.1). This new (voltage) sample, [where yj=y(tj)=z(x(tj)), etc., of course]
is then passed through a (1inear) "matched filter", where the weighting
function of the filter is

hy(T-t53T)at = Cag(t5)s(ty)), (5.1)
so that

UL E <§ S:)8s = g y(t:)hy(T-ti5t)at (5.2)

L AL BT H it R A ’

(which in continuous form becomes, on (0-,T+), the linear functional

* * T+
o WD (1)) = [ y(t)hy, (T-t,T)dt.) (5.2a)

The matched filters are shown in Figs. 5.1a,b. For the suboptimum situa-
tion of the cross-correlation detector of (4.7), we have

w(]) z E a_.s >x = E x(ts)hy(T-t,3;T)At (5.2)
nooT 5 < ON I VAN FE MY ’ )

and all operations here are linear, of course. The matched filter remains
the same; only the prefilter processing is differentT The filter, hM, is a
form of delay line filter, with suitable weighting (MhM) and a read-out at
t=T from wherever we choose to start the particular sampling for the
interval (to,to+T), from which we in turn then make the decision indicated
by (2.2). We have called such filters "Bayes mached filters of the 1st
kind, Type 1", cf. Sec. 4.2, [20], which is, of course, recognized as a
special form of (cross-) correlation filter.
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5.2 Incoherent Reception (H] VS. Hgli

Here we have the same phenomenon: a highly non-linear operation on the
sampled data, to obtain 2,2', cf. (4.4), and then to pass these into a
second-order nonlinear system, which in this instance can be expressed in
the manner of Fig. (5.2), either as a combination of time-varying (linear)
filter and zero-memory square-law device, or as another time-varying (linear)
filter, and multiplication operation. The point is that the (1inear) matched
filter here canbe represented in two realizable (i.e. operating only on

the past) forms. These are:

n

= , 4 )
hy(tj-t;st;) = sol. of ZZ]hM(tz—ti,tl)hM(tz_tj,tl)At_ aoiaojsisj>’
. 0, elsewhere , (5.4)
where
(2)x _ ¢ ~n (ngor )
y = 1§ YiY3 (aoiaoj515j> = J_Z] Y5 1‘; yihM(tj‘ti’tj)(At) (5.5)
¢ 2
= Lzt (5.5a)
J=1

The filter, hM(tj'ti’tj)’ is time-varying and realizable, and we call it a

Bayes matched filter of the 2nd kind, type 1 (cf. Fig. 4.3, [20], also).
In the narrow-band situation we are usually forced to deal with, an

equivalent, alternative form of matched filter (e.g. Fig. 5.2, where a

multiplier is employed, instead of a .zero-memory quadratic device). For

this we have

W(Z)* = E y h (ti-t.,t:)At ; hy = 0, ti>t, (5.6)
i] Yi IMYG i) > M LS R I
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where explicitly

Py (t5-t;t)at = <z1.z3s)e Lty > s S0, ty<ty (5.7)
in which
(ZiZ§>% = <§01aojsisj>. (5.7a)

This filter is discussed in Sec. 4.3, [20], also, cf. Fig. 4.4, ibid. It

is realizable, time-varying, and as in the coherent cases, depends only on
the signal statistics; see Sec. 5.3 ff. (The same filter, hM’ or EM’ clearly
applies for the suboptimum, autocorrelator of (4.10), with Yi > X Y5 7 Xy
a linear transformation, cf. (5.3).)

5.3 Signal Scenarios

Using Sec. 3.1 we can provide a more detailed structure for the above
matched filters, including the effects of fading (a) and propagation Tlaw
(v), cf. (3.2), (3.2a). Specifically, for narrow band signals without ampli-
tude modulation, we have from (3.2), (3.2a)

aG
- . = _________.0 = o
55 = /2 cos [wo(tj-e)-¢j—¢0] L — = aB, ; (5.8)
AYJZIN
- Y -
B, = 6,/ ‘/21N , (5.8a)

where the fading effects are governed by the statistics of a, cf. (3.3),

for example.
Thus, for coherent reception the matched filter hM’ (5.1), becomes

explicitly
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0-<tj<T+; =0, elsewhere, (5.9)
since w](e) = §(e- -€, ). Moreover, with the assumed stationarity of all
random processes here we have aoJ = 36 (= E'<Bo>), under the further not

unreasonable assumption thatao (and a, Bo) and e are all mutually in-
dependent. This result, (5.9), is clearly independent of the fading law,
whether or not it is rapid or slow, and whether or not the signal source
is moving. This, in turn, is a direct consequence of the coherent mode
of detection.

On the other hand, with incoherent reception all the above effects
appear explicitly in the structure of the appropriate matched filter [e.g.
hys GM’ (5.4), (5.7)], as we might expect: because of the second-order
statistics involved. Thus, for example, hy, (5.7), becomes now from
(5.8)

hM(tj—ti,tj)At = <a01 OJ></ = 01 OJ>cos[w (t; -t )-6; 03 1 ti>t
= 0 ' tj<t.i ’

(5.10)
and we have, moreover, the various situations:

((i). slow fading (one-sided):

(agitgg) = & = o (/1" (5.11a)

< (ii). rapid fading (one-sided):

(oo ) =

0i“0j

2
%

) »

-2
S35 * 301845

—
|

T (02y,7 42 =2/ \2/7 27
= (2" (BD)/T" 3o, 5+(1-84 )56, )/ T (5.11b)
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(ii1). slow fading (two-sided):

35 = 01 = af 8,5 = a2(eB)/Tp 2. (5.11c)

These results can be extended to include doppler, namely, relative
motion between the desired signal source and the receiver: the normalized
signal (5.8) is now

=5 . _ “oVd
= y2 cos[(w0+wd)(tj-€)-¢j-¢o] Pow, = s (5.12)

d S

so that [cf. III, Sec. 5.1 of [34]]

~(aw) 2 (ts-t.)2/2
Pg-ij = <gisj>e,wd,... - € ‘ b Cos[w (t t )45 +¢J]’ (5.13)

where Awg =(w0/co)Avd, ti-ty = (i-3)AT, and (Ayd)z is-the variance in rela-
tive velocity, and we have postulated a gaussian distribution of velocities;
< is the speed of (wavefront) propagation of EM waves in the medium in
question. Applying the relations (5.11) with (5.13) gives, in this more
general case,

-t. )2/2

hy(t5=tst5)at=(ag 53,50

M( j Cos[wo(ti'tj)'¢i+¢j] ’ tj > ti’

oi O:‘l>

=0, tj<t1..‘

(5.14)
for this matched filter for incoherent reception. In this way, from the
"anatomy" of the desired signal, from source to receiver, we can construct
the desired matched filter for detection. [We remark that still more

sophisticated (received) signal forms can be constructed, if the channel
itself is dispersive, i.e. has time-delay and frequency spread effects as
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well as fading (above), cf. [35]-[38] and remarks at the end of Sec. 3.2
above. ]

5.4 Extensions: Binary Signals (H2 VS. H}li

The matched filters above for the "on-off" cases (H; vs. HO} are
directly modified in the binary signal situation (H2 VsS. H]). Comparing
(4.3), (4.5), (4.8), (4.11) with the respective "on-off" cases, we see at
once that (5.1) and (5.7) are modified to

(21) = . . = .
hy At‘coh = <a0‘]s‘])Z <03 55 0< ty<T3 =0 elsewhere ; (5.15a)
n(21) 4 - .=
" I1nc _<01 0] 1SJ>2 <ao1 03%i J > byt 0 elsewhere .
(5.15b)
From the results of Sec. 5.3 we have, in detail:
(21) , _ (2)
hy "’ (T-t33T)aT = /f((aoj>2cos[m02(tj-eo)—q)j -4,
~(ag:Dycosu (ti-e =644 1) (5.16)
0j/1 ol'"j S0’ 7] 0 ? .
0 < tj <T,
for the coherent cases (where any doppler is compensated for). For the
incoherent cases (5.14) becomes
hlslzn(tJ t t JAT = e <501 OJ>2cos[w02(t t )- ¢( )+¢( )]
1
'<éo1 oJ>]C°S[“ol(t t )- ¢( )+¢( )]}
tj >t 5 =0, t, < tj R (5.17)
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where now the effects of doppler (v Awd) show up as a common damping factor
(since the sourceofsignals 1,2 is the common source). For further "anatomy"
of the filter structure, we can use (5.8), (5.8a), for a,i» etc.

5.5 The Generic Character of the LOBD as Adaptive Processor:
At this pointitis important to point out a number of general properties
of the canonical LOBD's described above. We observe that:

(1). For coherent and incoherent detection - with independent noise
samples - the matched filter depends only on signal statistics
and structure. Because the LOBD is a threshold system, only
first and second-moment statistics of the signal amplitude are
needed, Sec. (5.3). [Higher-order statistics are required,
of course, for doppler, which is phase variable, cf. (5.13).]

(2). The matched filter (by definition) is always linear, but may or
may not be realizable, in the sense of operating only on the
"past" of the received data [cf. Chapter 4, [20]);

(3). A variety of equivalent matched filters can be obtained, to
represent the data functional W(1), W(Z), etc.;

(4). The general functional description of the LOBD is as follows:

(i). It first "matches" the receiver to the (non-gaussian, or
gaussian) noise or interference, in that (a), it "adapts"
i.e., determines the Class of interference (A,B, or C)
and then estimates the Class parameters, 7%A’ 7%B’ etc.-
to generate a nongaussian functional, e.g. %,%', of the
input data;

(ii). Next, the LOBD then "matches" the signal - as it is a
priori known or structured at the receiver - to this
new input (%2,2', etc.), to form an appropriate correla-
tion detector for the non-gaussian functional %, etc.
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These "matched" filters are, by definition, always linear
and usually realizable in the causal sense [Sec. 5.2, 5.4];

(i11). For incoherent detection there is an additional, third
operation, which follows the matching process, (ii), above.
This is usually a noniinear operation plus summation, where
the additional nonlinearity is either a memoryless quadra-
tic process or a multiplication;

(iv). In the mixed cases, of combined coherent and incoherent
processing, (usually where there is some RF phase informa-
tion in narrow-band reception), the nonlinearities fol-
Towing steps (i), (ii), can be more complicated (cf. [1b],
Part II, IIC., for example).

Figure 5.3 illustrates the general formalism of LOBD signal detection,
for either coherent or incoherent reception, in the prototypical "on-off"
case (H] VS. Ho)‘ The extension to the binary signal cases (H2 VS. H1) is
immediate from Sec. 5.4.) Note the key elementsof Locally Optimum Bayes
Estimation (LOBD's), of the EMI parameters. (The LOBE theory is developed
in parallel concept to that of the LOBD, except that for the most part one
operates under the H]: "signal-present" condition.) The combined operation
of LOBD and LOBE is clearly an adaptive process, which, of course, accounts
for its usually significant superiority over conventional systems, a priori
optimized against gauss noise.

Often, of course, in practice nonoptimum or finite-sample estimates
of the parameters of the interfering noise are usually used, as outlined in
Sec. 4.3 above. Moreover, before estimating the pertinent noise parameters,
it is necessary to establish which class of interference the detector is
operating against. One method of doing this is to estimate the pdf (or APD):
Class A noise is always distinctively evident by an (almost) zero magnitude
of the pdf (or a flat plateau in the APD) between the small-amplitude or
"gaussian" region, and the large-amplitude region. In Class B interference
there is no zero amplitude region (or flat plateau). [See [6], [7].) An
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additional advantage of these (estimated) pdf's (etc.) is that they can
also be used to give (estimated) values of the Class (A, B) parameters in-
volved, in the manner of [7], for instance. However, if the elements of
the EMI scenario are known, the needed parameters can then be calculated,
rather than estimated, in the manner of Sec. 3.2 above.

6. PERFORMANCE OF OPTIMUM AND SUBOPTIMUM THRESHOLD DETECTORS: MINIMUM
DETECTABLE SIGNALS, PROCESSING GAINS, AND CONDITIONS OF APPLICABILITY

From the general results of Sec. 2.4 and the specific results of
Appendices A1-A4, we can obtain at once explicit canonical forms for the
various error and correct signal detection probabilities by which perfor-
mance is most generally measured. This is discussed in Sec. 6.1, while
specific structures are reviewed in Sec. 6.2, along with the joint con-
cepts of minimum detectable signal and processing gain, in turn illustrated
by the specific relations developed in Appendices A1-A4. 1In Sections
6.3-6.5 we examine the improvement factors of the optimum detectors over the
suboptimum (correlation) detectors discussed in this paper, along with
the important conditions on the strength of the input signals which permit
us to employ these (analytical) performance measures, and thereby to ob-
tain meaningful numerical results from them. It is shown (in Sec. 6.4),
for example, that the set of conditions, for both coherent and incoherent
reception, must be simultaneously obeyed, if one is safely to use the
performance measures for either mode of reception. This coupling of the
coherent and incoherent modes of detection in the evaluation of either mode
is the consequence of the fact that coherent detection can never be in-
ferior to incoherent detection under the otherwise same signal and noise
conditions of observation. In any case, we emphasize the fact that our

results apply generally to all signal types, broad band and narrow band, and
can be immediately specialized to narrow band examples as needed, cf. Sec. 7 ff.
We proceed: "
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6.1 Canonical Performance Measures:

We now apply the specific results of Appendices A1-A4 to Egs. (2.31)-
(2.33), and note that regardless of the mode of detection, optimum (but
not suboptimum) algorithms are asymptotically normally distributed, G(log n
+ 032/2, 032), where 032 is the variance of the detection algorithm in
question (and is the same under both hypotheses)T Here (¥) refers to:

(-), HOZ (+), H1 in the "on-off" cases, or to H], H2, respectively in the
binary signal situations (s(]) VS. 5(2)). The results are the canonical
forms for the correct signal detection probability (Neyman-Pearson Observer)
and the error-probability (Ideal Observer), uséd in ongoing telecommunica-
tion reception.

We have, accordingly, since for optimum (threshold) detectors

Hq vs. H :
. «2
(N6, = 5 - 5 = o5
Hy vs. Hy:
. _(21)%2 (21> L
R L S )

the relations [from (2.31),(2.32)] for the "on-off" cases, both optimum and
‘suboptimum++

*

Pé*) éi%-{1+o[ j; -0 (] 2a( ))]}, (N.P. Observer), (6.2)

where aé ) is the false-alarm probability and Bé*) is the false-detection

probability Ly

+ The suboptimum cases yield asymptotically normal forms, but with different
means and variance structures, cf, (6.3) ff.

++ We use the condensed notation b(*) to denote either b* or b, (? = opt 3

" otherwise suboptimum). It is important to note that the apprOprlate bias terms
(i.e. those for which the algorithms becomes optimum for the corresponding noise
[cf. Appendix A4-1,D] are assumed here. Otherwise, one must use (2.31), (2.32)
directly. See footnote, next page
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( *
(*) gQ{Z ) 1 %o _ log(*u)
o m—{le }s g w—-ﬂ-e 13,
F Loz 2/? Bs gy gl 27 25, (g3
with
o(x) = -o(-x) = —Z—fx e'tzdt : e'l(y) = x in o(x) . (6.3a)
V1 Y0

For the suboptimum cases note the presence of 30, (cf. A.4-12,31), as well

as o in the above (and following) expressions. In the optimum cases we have

0,50 + o*, of course, heref
Similarly, for the Ideal Observer (thresho]d’i=1) in the "on-off" cases,

: ity pl*) (*) e (*)
where one considers- the: error probability Pe = qo.' ‘+pB as the measure

o{ gerformance, the result here is specifically, on combining (6.3) in
*
Pe :
" i ) o)
p(*) & L1pop 0 . 109 b qer - 20, Jog B 3y e, [10.],
2/2 /fc'g 2/2 /_0* (6.4)

for the general channel (u=p/q#1, or u=1). This reduces to the case of
the symmetrical channel (u=1) to the more familiar, simpler result for the

optimum cases: '
. (%)
en): | Pl 5] {1-9[-53—2_—]} , %=1, [1.0.]. (6.5)

When binary signaling is employed we can also use a Neyman-Pearson

Observer (N.P.0.) procedure, where now one of the error probabilities

* *
aé ) 3(2)( ) (the [conditional] probability of incorrectly stating that
si?nal 52 is present when actually signal S1 occurs) is preset and the other

) s )

which becomes now

is minimized or otherwise evaluated according to (6.2),
.1.

Our suboptimum cases are here (and subsequently) restricted to those situations
where the (nonvanishing) bias is chosen to be the appropriate bias for the class
of noise for which these (suboptimum) algorithms, cf. Sec. 4.2, become optimum
cf. Appendix A4-1,D. Otherwise, we must employ (2 31),(2.32) dlrectly as
performance measures.
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(21)(*)

A 53 {1+o[ fi’/%—-—- -9’1(1-231(2”*))]}, [N.P.0.], (6.5a)

*

5 &

where (6.3) becomes

(21)* (21)
(*)  (2)(*) - 1 o log(%*™" "/unq) . _
R R YR e 1P/ Pys PptRp = 1
2/2 vz 52N (6.5b)
(21 21
s ) L gD ¢ 1 g %o " l0g®?)y 21) ) (6.5¢)
b2 = 27 LNy -

and the "on-off" threshold A is replaced by the binary thresho]d}Y(21)

[Clearly, this is symmetrical in S], 52.] Again, note that o # % # 03

cf. (A.4-71-74), and in the optimum cases, 00,30 + og.[See footnote, p. 55.]
A more meaningful measure of performance in the binary signal cases,
however, is the Ideal Observer [1.0.] above, (6.4), (6.5). Accordingly,
from (2.33) and Appendixes A.2-3,4; A.4-3, we find that in these binary
threshold cases, canonically, for the "unsymmetric" channel (u21f1)

(21)* 1 (21)* 1o
. op(*) o1 % 09 17y 09 Uy
1.]1_2]7‘12- Pe ﬁf{]‘Pze[ > - /2_8(2])* 1+ p]e[" Z/f + /_0(2])* 13,
0
[1.0.1,%=1 . (6.5d)

In the more common operational situations it is the symmetric channel (u21=])
that is used, so that (6.5d) reduces directly to the more familiar, and simpler,
threshold result:

. 0(21)( )
(gzljlli_ Pé ) 2 ~ —{1 of =—— 7 13, [I.0. 7{—u2] . (6.5e)
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This, 1ike (6.2)-(6.5d) above, is a canonical form; [but note the restriction,
footnote, p. 55.] o )

Finally, as we have noted earlier and recall now, various conditions
on the "smallness" of the input signals («a§>0) must be satisfied if these
performance measures (6.2)-(6.5e) are to predict receiver performance
accurately. These conditions will be discussed in Sec. 6.4 ff. In the
meantime, we note that these results above are canonical in several ways:
(i), their form is independent of the mode (coherent or incoherent) of
reception; (ii), they are independent, formally, of signal structure,
(i.e. narrow-band as well as broad-band signal are included), and (iii),
last but by no means least, they are Tikewise invariant, formally, for the
explicit noise statistics.
6.2 Minimum Detectable Signals and Processing Gains: u

We can "anatomize" the quantities [c( )2, % (21)(* ) ], identifying
the "minimum detectable signal" and "processing ga1n“ through the following
definition of "output signal-to-noise ratio" when the (total) noise is stationary:

()2
@l =5 = 1P @@EN= Mm@ 1) 6.6)

N‘out in-min

where H(*)( ) is the processing gain, and (ﬁz>é1% is the minimum input de-
tectable signal (-to-noise rat1o) (N01n min® OF more loosely, the minimum
detectable signal. Here, £(*) ((a0 é:% is some (simple) power of <ao>min’

as we shall note below, cf. (6.9), (6.22b), whose structure depends on the

mode of observation. The quantity (S/N)ézizis an effective output signal-
to-noise (intensity) ratio, after processing, which determines the perfor-
mance of the detector in these threshold régimes, according to the appro-
priate probability measures, (6.2), (6.4), (6.5) above. The minimum detectable
input signal-to-noise ratio {aﬁ}m:n
tensities measured at the same point in the receiver, usually at the output

has its component signal and noise in-

of the receiver's (linear) front-end stages, before subsequent nonlinear

*
processing (as exhibited in the algorithms gé )(ﬁ), etc.). The minimum
detectable signal is the least (normalized) input signal (intensity) which

See footnotes on pp. 54, and p. 55, particularly.
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can be sensed at the receiver, subject to the particular controls of the
decision probabilities and observation time (i.e. sample-size, n).

From the assumption of "practical optimality" discussed in Sec. 2.4
above, where it is sufficient that the H,-variance, (o?n)z, of the threshold

algorithm be effectively equal to the Ho-variance, (cgn)z, e.g.

(%)% = (0% )2 + F(n,a?) 2 (o3 )%, n > 1,
o LE(n,al) << (o2 )2

cf. (2.29), we can also derive the useful concept of "minimum detectable
signal", <ao>m1n’ and assoc1ated processing ga1n, m*. This is because the
condition F(n _7)/(0* ) << 1, establishing a maximum value for threshold
signals, (a ), for wh1ch the algorithms are still LO and AO, cf. Append1x
A3, also estab11shes a non-vanishing input signal-to-noise ratio, (a Y,
for all n, and particularly, large n, such that 0 < <a2>ﬁ1n —I<&o>$1n]max(<<])’
where[(éo m1n max is determined by our selection of the quantitative
meaning of "<«<" in the above condition. This is physically consistent with
our notion of input signal, which is, of course, always nonvanishing.
Accordingly, instead of minimum detectable signal we can equally well
ask for the corresponding maximum detectable range, Yy oo of the desired
signal. This is obtained in Sec. 3.1 from (3.1), (3.2) and the definition

< m1n = (19/(1y = TR _(_)_—

d max
2(12/2)2 a2(6Z/2) (cyrg)®Y

R <IN> 92+c§ |

(6.7)

=2Z\un
N
—A N

which incorporates the various elements of the propagation law, interference
scenario (Sec. 3.2), fad1ng, beam-pattern structure of desired source and
receiver, etc. Thus, (S/N)TR’ in contrast to (S/N)Out in (6.6), is a signal-
to-noise intensity ratio which. is a measure of the desired signal Tevel
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at the transmitter output, in terms of the noise or interference level at
the output of the (linear) front-end stages of the receiver. From (6.6),

(6.7) we see that ré %ax may be obtained from the relation

T = T2 DI (392 1o (25, (M) 12 (6.8)

(
lr'd o'min

(*) (*) sy : :
so that once <§ >m1n’ or o, and I are specified, along with the function
f, maximum detectable range can be calculated, as well. This has been done
in a recent study by Middleton [34], and will not be pursued further in the
present investigation.

In order to determine n(*) and ag é:% in (6.6) we need the specific
results of Appendices 2, 4. We begin with

I. Optimum Coherent Threshold Detection:
From (A.2-14), in (6.6) we have (for henceforth stationary noise

1:3\r'o<:esses):Jr

x2 x - 2@y (&)
%0-coh” ZH h<ao>m1n coh 2(nlL z <ao1 1> ) Eq. (A.2- ]4)

(6.9)
. m* L(2 ; {a = 1—-% a_s:\2
v coh - 3 {3 )min-coh = Zn : o i> ’ (6.10)
with
L) = (), = [z 1og wy (x]H,) 1Py (x]Hg )
=f (wi /wy ) 2wy (x [, )dx, Eq. (A.1-15), (6.10a)

¥ See footnote, p. 102.
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and f*( ) in (6.6) is clearly ( )], i.e., the first power of the indicated
argument. Noting that here the sampling process may be adjusted for narrow-
band signals so that <si>:= Smax - V2 and with no real restriction as to
generality in regarding a and s to be statistically independent, so that

<§ s 3 = a, /2, we see that <a2>m1n coh = ig: regardless of the fading

law, on]y the mean amplitude is relevant.__ [This is not the case for the
maximum range, however, where both Eg'and ag (waz) are required, cf. (6.7).]
We also obtain, on solving (6.2), or (6.5), for 03, and then using (6.9),

the following useful expression for the minimum detectable signal:

a2y

- (n*oh) o7 (2pg-1)+07! (1-20%) | %:[N.P.0. ], p=P

min-coh F
267! (1-2p%) :[1.0.]:p=1.
(*) (*) e 1)
_ *2 *2
= (me) 7 ey 2 or A, (6.11a)
with
B = o aprr e (1-2ak) 5 Cr o =207 (1-2p%)=fB*
Cn.p. = N By.p. 50 (2pp- ag) 5 L1, G 6 Lo, (6.11b)

This relation shows how the minimum detectable signal depends on sample size
and the background noise (via n*) and on the "controls" of the decision process
in detection, e.qg. ps, uF, P;.

For binary signals we use (A.2-50a) in (6.6), to get in these sta-
tionary cases

. 21) 21)* .2\ (21)
binary: (o é cgh) ) éoh @ >l$11n coh
= 2(n(? Z(QJ” 2l aDs{1y)2), gq. (a.2-50),

(6.12)
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so that

' mh min-coh

n2)* g (2); 2y (21) EJZ__E( (2 —(‘Ys(l)>>
1

(6.13)
- We have also, cf. (6.11a), the equivalent expression
(21)* (21)%\-1,.(¥)2 _ (*)2,2
< >m]n COh Hcoh ) {CN.P. or CI.O.} . (6.]3a)

With equal amplitudes (aéz) = aélb, a usual condition of operation,
the effective minimum detectable signal becomes now

GiE)-¢i™h (2
o .

(6.14)

21)*  _ -2 1
(a >rfnn-)-co =4 ; (

By inspection, it as once evident that choosing antipodal signals,

e.qg. sgl) -s§2), and selecting the t; such that Si = Spax V2 (at least

for narrow-band signals) maximizes the minimum detectab]e s1gna1 here [as

well as 0(21) ], and hence further minimizes Pg. Thus, from (6.14) w
have
2\ (21)* = az2
antipodal: (a )an coh = % - (6.15a)

Similarly, for orthogonal signals, e.g.

(2) _ .1 . .
S V2 cos wots 5 s = Y2 sin wots s . (6.15b)

we see that the sum in (6.14) becomes
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>
_0

D -

n n
2 1 .
min-coh - ; cos u ti-sin w t. ) ﬁ'; sin (woti/z)}’

2a g , (orthogonal), (6.15b)

which is thus maximized by choosing the sampling times ti=k(4i—1)n/m0, where
k/w0 = 1/27B = T/2m, in which B is the bandwidth of the signals, which are
on" during (to,to+T) intervals. Of course, for "on-off" signalling, S(])-
here and <é§ é?AzZoh <62>m1n coh = a2, cf. (6.10) et seq. Accord1ng1y,

we have obtained quite readily the we]] known results that for the same total
signal intensity, binary antipodal signals are superior to binary orthogonal

signals, and are equivalent to "on-off" operation (this last, since

- ’ - s ] O n Y
aolbinary > zaolon-off under the same power conditions). By "superior" here

is meant smaller error probabilities (or larger PD's, cf. (6.2)), since

* -~
oéZ]) is increased in the antipodal cases vis-a-vis the orthogonal signals.

II. Suboptimum Coherent Threshold Detection (Cross-Correlators)
From (A.4-52a) we obtain in the case of the suboptimum cross-correlators

for "on-off" operation in the usual stationary régimes:

n
2 _ 2 _ 2
%-coh ~ 2Hcoh<"°'o>m1'n-coh = 2(n)( ; <éosi> /2n) (6.16)
2) 53 L 2 =2
S <a0 min-coh ~ ?ﬁ'iz] <Si> >a, . (6.17)

Comparing (6.17) and (6.10) we see at once that here

.
Teon/Tsp = Wocop = L2} (1) , where L&) = Eq. (6.10a).
(6.18)

The quantity @d coh is the degradation factor for these cross-correlation
detectors (4.7) vis-a-vis the optimum (threshold) detector (4.1), for the
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same input signals, observation periods (n), and coherent (mode of) observa-
tion. Thus, @3 coh is, not unexpectedly, determined by the statistical
character of the noise alone, through L( ) (6.10a). For gauss noise
L(z) =1, cf. A.1-3, but for the usually encountered non-gaussian noise,
L(z) >> 1. [See Sec. 8 for various values of L(z), etc. ]

With binary signals we use (A.4-20) to write similarly

(21)2 _ o (21)7,24(21) L <a(()2)s1§2§-<aé”s(” 2
99-coh = 2Tcoh <a m1n -coh _ 2+(n)-{ ; ( P )"} 26.19)
(2)\- /.(1)
.(21) _ (21)  _:2 0 < >'<§' ) 2
. r[c(:oh ns < >mln)coh a5 iZ]( L?ﬁ' : )" (6.20)

(with aéz) = aé]), usually), and, again, the degradation factor becomes

(21)*

1)* 2
2l (21)* _ 4, 2) (6.21)

( 1)
/m = 24_coh

coh

unchanged from the "on-off" cases above. Similarly, expressions like
(6.11), (6.13) for the minimum detectable signal in these suboptimum cases
are

(21) (21) -1

-1 A2 2 .
IIcoh{CN.P. or CI.O.} ’ <' >m1n coh ~ coh {C

N.P. O" C10} >

(6.21a)
where CN p. = 9'1(2p0-1)+e'](1-2aF), etc. are the suboptimum versions of
the controls for the N.P. and I.0. cases, e.qg. pﬁ > Pps P; > Pe’ Sec. 6.1.

(%)

min-coh

III. Optimum Incoherent Threshold Detection:
We proceed as above for the coherent cases. Here we apply (A.2-40)
to obtain for "on-off" signalling (in the stationary régime):
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2
1} ", 2
on-off": °o-1nc = Z <a01 0] 1sJ> {(L )2 (2) )8, +2L(2) (6.22a)

= 2\* 2
B 2H?nc«ao)min-inc) ’ (6.22b)
so that
2\ * = ] 2 2\ 2, 1 2y 2 6.23
<a0>m1'n-1'nc - {?12 <ao'|s-| } ? § ao ) = ao ( )

(s? = 1, by normalization).

Accordingly, applying (6.23) to (6.22a,b) gives directly the processing
gain for these incoherent, "on-off" threshold signal detectors:

(4) (2)2
L 2L
T = 5 0" Ty @D (6.24)
where
21 % o2 09 _ _ . _
Q-1 = ﬁ'i% M3°43 (20) > Mg = <ho1 03}/a ’ = <;isj>'
(6.25)

Here L(z) has been specified in (6.10a), while L(4), cf. (A.1-19b), 1is given by

L) = ()2 = f_:(%)z wy (x| Hy )dx (6.26)
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and is also expressed numerically in Sec. 7. We now observe that the proces-
sing gain (6.24) depends on signal structure, as well as on sample size (n)
and noise statistics, unlike the coherent cases, cf. (6.10).
The minimum detectable signal (6.23) may also be written, by (6.22b)
n (6.2) or (6.5), as

,pﬁEPﬁ/P,
(6.27)

-1 -1 .
(a2 s V2] O Epre (1-zag) s NP0,
o/min-inc inc 5

-1 .
0 (1-2P;) : 1.0.

-1/2
()21 . o7 Cf ) (6.272)

cf. (6.11): note the different exponents on 1* and {9'1...}, etc.

For binary signals we next use (A.2-56) with (A.2-52a), to write (in
these stationary réegimes)

binary:
21 (21)* 1 M 2) (2)_(2 1).(1)_(1)_(1)\2
(c(>1r)|c "2H1nc)(<aom1n1nc =IZJ< )()( ()> <()()()()>)
C 2 6.28
.{(L(4)-2L(2)2)6ij+2L(2) } o, (6.28)

so that, parallelling (6.22a)-(6.25) we get in these binary cases the following
expresss1ons for the m1n1mum detectable signal and associated processing

gain [<h ># <a(]) >]

< >(21)* - 1 <ka(2) 2> < (1) (1) 2> 2,1/2

min-inc -
<ac()2)2>'<ao ) (#0), (6.29)

65



since <(s$2) (]))2> = 1 by normalization, and

* (4) (2)2
n{ZD* ok gy —t(—)—[q(z”n}, (6.30)

where specifically

(2) (2) (2s) (1s), |
Qr(121)'] = .§.| oo <a } ; pgj)s(sg )s§ ))
1 n {<aéz >-<aé”>} (6.31)

n, (P2, 2] (aﬁ))m(l) (1s),2
iJ n{<a(()2))_<ao

where we have used the definition of m; 5 n (6.25) above.
In the important spec1a1 cases where the signal amplitudes are equal,

al2) - a(]) =a,, e.g. <a(2) > <% } <52> (#0), (6.28) simplifies to

0]

(6.31a)

A1) - ,(2),

2o—=Lo—t s,

2
(o (2]) , )* ag L
%- 1nc 1nc < 0 1nc

(2)2

(o (25) o{1s)y2

Z mii(ei5 =035 > (6.32)

so that

L) (2),

<>(21)* =_ Lpl2h)* _nfL
min-inc *“Mnc 4
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0(21)

which defines Q s €.0.

A(z]) n ] m (p(ZS) -f:I]S))Z

Q -1 =7 (6.33a)

n L, n
1J
In all instances we have the binary analogue of (6.27), viz:
(21)*  _ (21)%-1/2
< >m1n inc (m inc ) {C* N.p. O C 0} (6.34)

IV. Suboptimum Incoherent Threshold Detection (Auto-correlators):

From (A.4-58b) we now obtain for "on-off" signalling and stationary
régimes when the (generally suboptimum)auto-correlators (A.4-56) are used:

2 _ 2\ 2 - 2,2 2
%-inc © 2IIinc<ao>m1n-1nc ( z<ao1 0j%i J> )"/ z <ho1 0j 1SJ>

‘[(—)(—4-'3)61\.]"'2] ’ (6.35)
cf. (6.22), so that
<é§>min-inc = {%-§<a§>2(§$>2}1/2 = ag , cf. (6.23) , (6.36a)
and
2 2 2
2 (§ Mg ) ,
| | = .iJ n nQn
** “inclcorrel = — (6.36b)
2 1 m n? 2, [(H-3)s, 421 2L(-1)+2(0,-1)]
J R

for the minimum detectable signal and processing gain for these auto-correlation
detectors. Analogous to (6.27) we have
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-1 -1 .
%o fnin-inc inc 26'](]-2P ) .1 Tinc

{C p or C 0} s

(6.37)

where again CN.P.’ etc. is the suboptimum version of the control Cﬁ.P.’ etc.,
(6.27).

Comparing (6.36b) with (6.24) gives us the degradation factor for these
(simple) correlators in nongaussian noise

"on-off":

;

2

#oin = Tine/Mne = Y/ D120, -0 D 001 |, (6.39)

where L(Z), L(4) are given by (6.10a), (6.26) respectively. As expected, when
the noise is gaussian, L(Z) =1, L(4) = 2, and :. ®ine - 1: the (simpler)
autocorrelator is itself threshold optimum now. Unlike the coherent
cases, however, cf. (6.18), ¢, .  depends on signal structure and sample
d-inc (2) (4)

size (n), as well as on the noise statistics, L s LYY,

With binary signals we use (A.4-72b) in these (stationary) suboptimum
incoherent situations, to write similarly, cf. (6.35):

binary: ( )
2 2 2
%-inc n (6.39%)

E {Q(a01 0551 2)>—<~a01aoas1s‘])“ )}2[(;1;3)61j+2] :

21), s.2\(21 2
- 2H1(nc ({a >é1n)1nc ’ (6.39b)

and paralleling (6.29)-(6.31) we have
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2\(21) 2)%_/ (1)2 (21) a2
(a >mm inc <a0 >"<ao )0 5 Tine’ = — (21) ’
2 (x*-1)+2(a;21)-1)]

(6.40)
where Q(Z]) 52) a( ), is given by (6.31). However, for the important
s1tuat1ons where aéz) = aél) =a,, the above simplify to
,(2) (),

B - (21) 112
<é (21) = a? ; n{21) . "G Y , (6.41)

min-inc 0 7 ~
2x*-1+2(3(21)-1)]

and Q£2]), (6.31), is now replaced by 632]), (6.33a); <a2>é$l)1nc is also
given by (6.34), where CN p. > Cy. p » etc., cf. (6.21a) et seq.
Finally, the degradation factor @ézlgc becomes from (6.30) and (6.40)

[a$?) # a{1)1, and (6.33) and (6.41), [af2) = a{V)1:

(21)2
4q
Qézlnc(")l =1 ,

(21), (21)* _ [
inc /H1nc

p— ) :
Dc1+2(Q421-m) 0L Hea (2% (o {21)1)3

4 aéz) # a£1) (6.42a)
5(21)
2(Q," °-1) — a(2) = o)
—7 NS 3 0 0
| [x*142(3(21)-1) 1L () (6.42b)

-y

which reduce for gaussian noise (x4=3), to unity, as expected. Equations
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* . n "
(6.42a,b) are to be contrasted with ®§2]) = 1/L(2), (6.21). Like the "on-off
cases, the degradation factor also depends on the noise statistics, on

sample size,and signal structure. Finally, note that (6.34) applies in this

suboptimum situation:

G222z

o’‘min-inc inc N.P. O Cro.): (6.37)

It is convenient to sumarize the various results of this section 6.2 in
the following two Tables: The Notes to Table 6.1a apply equally to Table
6.1b, 6.2 ff. Note that the results analogous to those shown in the
text and summarized in Tables 6.1a,b, and  for the clipper correlators
Sec. A.4-3,are provided in Table 6.2.
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TABLE 6.71a SUMMARY OF THRESHOLD DETECTION PARAMETERS:

"ON-OFF" INPUT SIGNALS*

"On-off" Coherent Threshold Detection Incoherent Threshold Detection
Input
Signals Optimum Cross-correlator Optimum Auto-correlator
. 2,2
(gza..a~ s155)7)
2 n o 2 2. (2)2 | \{3* ©f 0°1°]
((,*) L (2 )§<ao1 1 Z(am.s].} Tna, ?l' Z("“01 0J 1SJ> a > T
(2):2 (4) (2) 1j
»nL**a ] #[L-208 T8y )
[Eq. (6.9); Eq.|[Eqs. (6.16), [Eqs.(6.22a),(A.2-40)] [Eqs.(6.35),(A.4-16)]
(A.2-14).] (A.4-8).]

2\ (* 1 0 2
(ac),fm’.-o 7n ;(“‘0151)

=2
-> aO
minimum _ -1
detectable '(Hcoh) (CN P
signal
2
or Cf o.)
Egs.(6.10),
6.11)

=(same);Eq. (6.17)

~1
ﬂ%oh(c

N.P. O
2
Cr.0.)

Eqs.(6.17),
(6.21a)

{ 2:<a0'l i

1

=(Mfe) (G por O o)

inc

Eqs. (6.23),(6.27)

(same); Eq. (6.36)

-1/2
Linc (CN p. or CI 0. )

Eq. (6.37)

* See "Notes", p. 73.
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TABLE 6.1a. (Cont'd.)
"On-off" Coherent Threshold Detection Incoherent Threshold Detection
Input
Signals Optimum Cross-correlator Optimum Auto-correlator
(%) (2) LY 1+—(—)—{(2)2 Q.-1)3; i
i > n —g 1 5 —
( ) nL 4
2[(x*-1)+2(Q,-1)]
Eq. (6.10) Eq. (6.17). . (6.24)
Eq. (6.36)
. _1 ''2 2
Processing Q=15 2 mj 1J(>1)
gain " ij J
Eq. (6.25).
2)2
. 2 [, (4) + 2L( _

Degradation -
Factor T(x -])+2(Qn-1)], Eq. (6.38).
B{ ) o) /2 Eq. (A.4-55) -o{*)2 /5 Eq. (A. 4-55)

inc” %-coh Q. : %-inc q. A
Bias Terms




£/

* NOTES:

(1).

(v).

TABLE 6.1a (Cont'd.)

céf) - O-](2p(*)-])+@-](1—2aé*)) ; ¢(*)

= 297! (*)y .
P. D 1. =2 '(1-2p, ") 5 Eq. (6.11)

* (%
with pé ) = Pé )/p H
Stationary noise; independent noise samples (n); symmetrical pdf's of
the instantaneous noise amplitudes (x);

Data acquisition period (vn) is large, so that the various detection al-
gorithms, g( ) are asymptotically normal under Ho’ H1.

The LOBD's here (i.e. "optimum algorithms") are AODA's as well. The
generally suboptimum correlation detectors are optimum only in gauss
noise. [See Appendix A.3.]

For signals with incoherent structure, Q, ¥ 1. For signals with completely
coherent structure, Qn ~ 0(n); in particular, for sinusoidal wave trains,
Q, ¥ n/2, cf. (A.2-42e).
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TABLE 6.1D,

I. Binary InputSignals: o "

(21)(*)?
()

SUMMARY OF THRESHOLD DETECTION PARAMETERS:

Coherent Threshold Detection

Incoherent Threshold Detection

Optimum Cross-correlator Optimum Auto-correlator
a(2)# a(1).
(2)7, 44 (2) (2 )s2)y 1k (M t )a(2)(2) (2) 2
L Z{<é 2{<9 )- <’0151 ) %({{é oi 20j ) @A/ (M2A2 - (21)2
(<ao >'\"“o >) nQ,
~(al13{1)y 42 (oSl (1) siNs{132) | odneelon
2 Eq. (6.40
B @, q. (6.40)
2
SO S W1 S S
aé?)=aél) aé2)=aé]): a§2)=aé]);

@32 306 (D)-6{

[Eq. (6.12)]

[Egs.

-6

(6.19),(6.20)]

—2 ()2
a2 1 (2)

0 By 2 . (2s)
7 EJ he 5662

-b§}$))2'[Eqs. (6.28),
(6.33)].

same as above; Q(Z]);§£?1)

. [Eq. (6.41)]




ST

TABLE 6.1b.

II. Binary Input Si

SUMMARY OF THRESHOLD DETECTION PARAMETERS:

. /.2y (21)(*)
gnals: <ao>m1n ()

Coherent Threshold Detection

Incoherent Thresho]d Detection

Optimum

Cross-Correlator

Optimum

Auto-correlator

n
%__z (2) (2)> <§(1) (1%>
;

[Eq. (6.13)].

Eq. (6.14).

(21)*

* 2
coh ) (C* p.o" C10.)

=(m

[Eq. (6.13a).]

]

+ same, cf. Eq.

-~ same, cf. Eq. (6.19)

(6.20).

-1 2
= 1{2D) (Cy.p.or 1 0.)

[Eq. (6.13a)]

1 2) (2
v Z{«agi)si(' h?) ]
(s B
SCRBRGUDE
(aB%al1),IEq. (6. 29 ]

+-;E.: (aél) = aézb
Eq. (6.33)
-1/2 .
=(m2t)) (e porcy o)

same; Eq. (6.39%a).

~ same; Eq. (6.41)

-1/2 .

a2y p.o" C1.0.)

nc

[Eq. (6.37)]
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TABLE 6.1b. SUMMARY OF THRESHOLD DETECTION PARAMETERS
*
IIT. Binary Input Signals: HEZ;)( ): Processing Gain
Coherent Threshold Detection Incoherent Threshold Detection
Optimum | Cross-correlator Optimum Auto-correlator
(1)_,(2),
ay '=a,n
2 2 o
nL(2) n n2L(2) n| m- (23) nQYSZT) /2[()([}"])
ij n2 1]
(2)2 (21)_
[Eq. (6.10)] [Eq. (6.20)] p{1s)2- nLZ (210 +2(Qy -1

°1j

[Eq. (6.33), (6.33a)]

a§1)#a§2):

(4 2)?
(4 22 RIS

{
8 L4

[Eq. (6.30), see
Eq.(6.31) for 0(2”]

[Eq. (6.41)]: a{l)=a{?):

n(ﬁglz)-l)z

212381103
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TABLE 6.1b.

IV.

SUMMARY OF THRESHOLD DETECTION PARAMETERS:

Binary Input Signals: @3?}); » Degradation Factor

Coherent Threshold Detection

Incoherent Threshold Detection

102 kq. (6.2)

Eq. (6.42a): a{ l#al?)

Eq. (6.42b): a{l)=a(?)

V.

(2) n |
L2 g 2) (2)>2

sy,

[Eq.(4.3a)]

- 1 e
21

[Eq.

Binary Input Signals: ﬁé }(*): Bias
2 10/ (2).(2)_(2) (22
()> "'§1.Zj<<§1)c(>a)()§)
(1) U)>2 <a0) (1) O)S§1b2}
;{(L(4)-mfzf)aij+zL(2)2f
(4.9)] [Eqs: (4.5a),(A.2-52b)]

n
-3 IR

(h(” U)2>}1 a
1J~
{<a§$) (2) (2) (2) 2

a2y

[Eq. (4.12b)]
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM ) CLIPPER-CORRELATORS

I.

Detector Structure: g(ﬁ)

Coherent Thrésho]d Detection Incoherent Thresho]d Detection
"On-0ff" Signals Binary Signals "On-0ff" Signals Binary Signals
log u+B' +/§§ (8;) log u+B! +/§§ log u+B! +Z(e 0. )s n X; To +21)’ +ZA (2”sqn X;
9 W Peoh AN 9 ¥Pcon : 9 W Binc ; 9 9 WBinc 5 Pij i
_ -((6 )—(9. ))sgn X , (21) -
K a01s1] 1 i i 8o 35 Eq (2.13a)
II. Detector Variances: g
n n n n v
2 N o202 s (12 2 ~ (2) . (1)y72
2 % (ei) 212{<e1. > -<e1. b 12j((f>1.eJ.> (2-61._3.) 1\2‘]_[((6103) ) ((etej) )]
Eq. (A.4-68) Eq. (A.4-73) Eq. (A.4-68) . (Z'GTj);

Eq. (A.4-73)
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER-CORRELATORS

ITI. "Detector Variances: ég
Coherent Threshold Detection Incoherent Threshold Detection
”””” "On-0ff" Signals Binary Signals "On-0ff" Signals [ Binary Signals
4‘N1E(0)2 $<bi>2 4W]E(0)2$(<9§2)>‘<9§]b)2 (;%(ei9j>2{8W]E(0)2(1-513) > same with
- 2w']'E(0)51.J.})2 | (efej>2+((etej)(2)>
! gj@ie.j)z(z‘aﬁ) ’<(ei°j)(] )> *
Eq. (A.4-69a) Eq.(A.4-74a) Eq. (A.4-69b) Eq. (A.4-74b)

IV. Minimum Detectable Signal: a2

o min-( )

- . T
, 1

- 2 T —7 n Z 2,27
- vt I G A (8 0 WOL b
1 (-G K

-1 2 21)"! 2 2172 21)\-172

Neoh(Cn.p.9"C1.0.) \Héoh) Cn.por C1.0.) k,“iné (Cy.p. or C1.0.) NG IURECRNEES
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS:

V.. HE %, Processing Gain

(SUBOPTIMUM) CLIPPER CORRELATORS

Coherent Threshold Detection

Incoherent Threshold Detection

"On-off" Signals

Binary Signals

"On-off" Signals

Binary Signals

2
4W1E(0) n

2
4W1E(0) n

. {8w 0(16)
E%m13 ij 1E( )

-/Z Wi (0)8 - 1)2

2
82m 0%.(2-6, )
i 13743 ij

«(Q,-1 )]2
8{2Qn-1}

( (ao1fa02):

same:

o2 ()
i 7 P43 TP

-2} (0)+8w; £ (0)?)
- Q-7

Al
L 8(2Qr(] )1y

8917%02° )
8n [w;:(0)*(Q{)-11

q 2"
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS:

VI. Detector Structure @* a-( )( =1

(SUBOPTIMUM) CLIPPER CORRELATORS
)/Hz )), Degradation Factor

Coherent Threshold Detection

Incoherent Threshold Detection

=-2/Z 32wy (0)n

Eq. (A.4-66a)

i |
T 612

17 2 2
-7 ]z_@iej} {8w;(0)

Ca

. (1-51j)-51j/2'w']'E(0)}

Eq. (A.4-66b).

‘ "On-0ff" Signals Binary Signals "On-0ff" Signals Binary Signals
2 2 " 2
£ (0) 1 0) (/2 (o>+8w]E<0) (Q,-1)] /
(2) (2) (ao1 Y o)
k E L) (T s 1pea(e, )] o8 (1)
‘"[TET£ n n ( °437P45 P4
(21)
[=1: FoE; (A.4-36)-(A.4-46) R
in (A.4-31) FE: =1
YII. Detector Structure: Bias: ﬁt )
1.2 =2 N, .2
-2/§w](0) ; a '-VEW]E(O)aO -(1-/§w]E(O))§(ei> same:

2 21
<ei>-+Apg%)

(e e} = Ap(zn, etc.
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NOTES:

TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER CORRELATORS

(Cont'd.)

1). Stationary noise regimes

2). When F = E: the detectors are "matched" to the noise, i.e. are now (threshold)
optimum for the Class E pdf w]E(x)o,wenmst use the optimum (LOBD) results of
Tables (6.1a,b).

n,
9 a1 oL E et o) =17 @@l s 6Py,

'IJ 1] 'IJ 'IJ



V. General Remarks:

From the results above we can make the following general observations:

(i). Processing gain for coherent threshold reception (Hgoa, LOBD

or cross-correlator) is proportional to sample size (or obser-
vation time), i.e.,

*
Héoa v n ; [Eqs. (6.10), (6.13), (6.17),(6.20)]. (6.43a)
(i1). Processing gain for incoherent threshold reception (H(nz,
LOBD or auto-correlator), on the other hand, is ~ (n"),
1 <u<2,e.0.:

n{") wnt 1 <u<2: [Egs. (6.24), (6.25); (6.30),
(6.31); (6.33), (6.36b), (6.41)]
(6.43b)
If the received signal is sufficiently decorrelated that

=]

2 2
m1Jp1J ’

1
Q-1 =4

n

.3

i

cf. (6.25) for example, is 0(n®), i.e. at most there are n significantly con-
tributing terms in the double sum, then p=1 in (6.43b). On the otherhand, for
correlated signals (observed RF- incoherently here), Qn is 0(n), and =2,
Examples of the former type are independently (incoherently obseryed and)
generated pulsed carriers, such as those modelled in Secs. 20.3-(2), 20.4-3,
[12], where each received signal element s; 1s independent of the others, so
that Pij = 61j in effect, and % Q, = 1. For the latter type, we haye coherent
pulse trains (observed 1ncoherent1y) where o, J—cos w (t t ), cf. (5 13) (no
doppler), for instance. Then Q-1s (6.25), becomes 7{1+0(1/n)] = 2, (n>>1),
so that H§:g " n2. Intermed1ate values of u, (1<p<2), arise when the receiyed
signals are partially decorrelated, as happens, for example, when there is
carrier spreading (in frequency and therefore in time) because of randomly
moving scatterers in the path of propagation, which generates a consequent
doppler "smear" of the original signal waveform; Eq. (5.13), Awyg>0, shows
typical signal correlation function in the usual case of narrow-band signals

subject to carrier doppler spread.
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(ii1). The minimum detectab]e‘signa1 for coherent threshold
detection, similarly, is =,

(ag}éza N » (cf. Tables 6.1a,b). (6.43c)

(iv).  The minimum detectable signal for incoherent threshold de-
tection is, alternatively,

@B W W2 (1 <y < 2), (cf. Tables 6.1a,b),  (6.43d)

again depending on whether the received signal has an in-
coherent (pu=1) to coherent structure (u=2), as determined,
quantitatively by Q., cf. (6.25), (6.31), (6.36b), (6.41).
Thus, notethat it is possible for the minimum detectable
signal in incoherent reception to behave like that for
coherent reception, viz. <a§> Ly n'], when u=2, i.e., when
completely correlated signals can be used (and observed).
(v). Maximum detectable signal range, réf%ax’ whether for LOBD
reception or the suboptimum correlation receivers, follows
from (6.8) and (6.43c,d). We see at once that

ré*) " n”2Y . pl*) N nu/4Y , T<n<2. (6.43e)
-max Sus<

coh
Thus, the larger the power law (y), the larger must sample
size (n) be to achieve a given maximum detectable range.
Again, the coherent structure of the signal, if available
and used, importantly aids the detection process and extends

*

Yd-max*

(vi). In the important limiting situation of gaussian noise our
general results do indeed reduce to the earlier, "classical"
results (cited in [12]). We have
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(1). On-off Coherent Detection

2 Lol .0 (2)qy.
99-coh - 2Maj» Eas. (6.16), (6.17); (L 1);
) . >
Sec. 20.3-13[12] : &; = £ 55 = 2n 3
i
2
2, 82eg = 2nal - og )° . in Eqs. (20.79),(20.120)
of [12])

& Egs. (6.3) are identical with Eq. (20.79), (20.120)
of [12] when the noise is gaussian.

(2). On-off Incoherent Detection:

—2
2 1 °2 v s .
Oo-inc = 7 N4, (Qn—1. incoherent signal structure)
L2 1221, from Eqs. (6.32)-(6.24);(6.35) ?
99-inc -J a for instantaneous amplitudes; in

Egs. (6 3). J

When envelope detection with independent envelope signal samples
is used, we have
_2 —_—
0<2)-1'nc envelope " ag 599 inc " Jﬁ'ag ’

and hence (20.131) of [12] agrees with (6.3). [Compare
the envelope form of the threshold algorithm (20.128), [12],
with (4.12) for amplitude cases.] With amplitude detection
Oy_inc = "7Z al in (6.3) gives precisely (20.91), [121,
as required, where (o) = n.

[(3). Equations (20.93, p. 876,[12], are incorrect in their fac-
tors 2, following the incorrect relation between % and L
in the footnote on p. 875, [12]. The correct relation is
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¢G=§0G/2, cf. (20.2%), [12], gg;_QG = 2@06. Thus,

wherever ¢ . appears in (20.93), divide by 4.]

(vii). Corrections:
Ref. [47]: Eq. (3.27), delete factor containing L(4); Eq.
(3.27a), replace "2" by V2 in second factor of ©; Eq. (3.28),

rewrite as o¥ = o¥_ 1nc/J— Jﬁ;-<ao>m1n incs E9- (3.29),

replace Ze*nc by &*; (3.30), replace argument of o by
_ v 2

%- 1nc/2/— (172) H?nc a fnc

VI. Decibel Forms:

A convenient way of expressing our results in I-IV above is to use
a decibel representation, so that factors are additive and powers are
factors. This is particularly useful in numerical calculations where it
is necessary to determine individual terms separately, initially before
combining in the full relation. We have

v(*¥)2 | 2y(*x) X . ,

Ogotop = 0.3010 + n <§ Coh s A =10 Togyq As (6.44a)
v(*)2 Vo (

Gy 4nc = 0-3010 + n + 2(ag )1nc . (6.44b)

Similarly, we get

) 4 2[6(*

~
<a m1n—coh coh N.P.

g or E%f%.] , (6.45a)

v2\( JL 1 (x) L () v(*)
< m1n—1nc = -7 Hipe * [Oyp, or Cr.0.: (6.45b)

(These relations hold for both the "on-off" and binary broad-band and narrow-

band signal cases, of course.)
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6.3 Performance Measures of Optimum vs. Suboptimum Threshold Reception:

Since performance, as measured by suitable probabilities of correct
or incorrect decisions, Péte, canbe expressed functionally for general
input signals (broad- and narrow-band) by the general relation

*

Plg()e F( )[o( ) =g )(n)f(<a ‘ (6.46)

(0] m1n

cf. (6.2), (6.4), etc., and (6.6), we have at least three principal ways
of comparing performance, for the same signal waveforms against the same
interference for the same mode of reception:

 (I). Given n and (a2> the same in both optimum and

min
suboptimum cases, compare PD e to PD o -
(11).  Given Py . = P§ ., same n, compare (az)m1n to (ag)min’ (6.472)
(ITI). Given PD e = * @ Same input minimum detectable signals
| (<a2>m1n <62> , determine the increase in sample

size (n) of the subopt1mum processor vis- a-vis that of
the corresponding LOBD.

(Ia)-(I1Ia): Same as (I)-(III), but for optimum coherent (6.47b)
vs. optimum incoherent detection.

The first comparison (I) gives a probability measure of the suboptimality of
the suboptimum system compared to the optimum, for identical signal, noise,
and observation conditions (period of observation is n and mode, e.qg.
coherent, incoherent, etc.). The second and third methods of comparison
(II,III) require the same performance, but now with different input signal
levels or sample sizes. Again, the noise conditions are unchanged in each
instance, and the signal structure is unaltered, but the input signal level
(mao) or sample size may be changed. '

Other modes of comparison are clearly possible. For example, for the
same signals, sample sizes, modes of reception, we can compare performance
for systems optimum in nongauss vs. those optimum in gauss. In fact, that
is what we also do here, since the correlation detectors (with the correct
biases) are themselves optimum in normal noise. A measure of superiorigy
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of the proper processors in nongauss vis-a-vis gauss under these condi-
tions is, of course, given by the degradation factor ¢*, cf. (6.18), (6.38),
(6.43), for example. Equivalently, we can measure this superiority by
the extent to which Pﬁ,e are changed vis-a-vis PD,e (for the correlators),
or performances can be compared based on different sample sizes. Still
other possibilities arise, in the manner of Sec. 4.3 above, when algorithms
optimal in one class of interference are used suboptimally against another
class of nocise. For the most part, we will consider the comparisons of
(6.4%), as well as o} directly.

Accordingly, from (6.47) we have

6.3.1 Comparisons, Eq. (6.47)Optimum vs. Suboptimum:

(I). Fixed Sample-Size (n) and Input Signals (<a§)51nlL
From (6.18), (6.38),

o y(n) = (1/m*) (same n = n*),

coh/inc?

we have directly the canonical relation

2 _ 2
Oy = ¢§03 (6.48)

for both coherent and incoherent reception. This, in turn, in (6.2) gives
directly, with

ot = 2 [0 (2pgip-1)er] L AL = o2, (6.49)

on eliminating cg, the canonical form
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e

P*
P %{1+e[/€§{e'1(2—g-1)+e'1(1-2a’,§)}-e'1(1-2a,_-)]} » (6.50)

D

~ Bvol /AT ok o - (1-200)1 (6.50a)

for both coherent and incoherent on-off or binary signal detection. With
(6.50) we can compare Pp with PB directly, where usually of = ar. Clearly,
since 0 < ey <1, PD-i P} here, as expected.

Similarly, in the steady-state communication régimes, where Pé*) is

the more natural measure of performance once the desired signal has been
initially established, we have from (6.48) in (6.5) for the symmetric channel
(w=1):

Py v y(1-0[/a5 07 (1-2p)y |, o7 (1-2p) =5 ct o, (6.51)

where now, of course, P, > P%, (¢4 < 1), as expected.

(I1). Same Decision Probabilities (PD,e_f_Eﬁ’el} Sample Size (n):

Here the comparison is made between minimum detectable input signals
when the decision probabilities [(6.2), (6.5), (6.6)] are equated. Thus,
we have

o. = o* (6.52)

for all modes of operation here. From (6.9), (6.16), or (6.22b), (6.35), we
get directly
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2\* _ 2 . 2\ * e 2
<ao>min-coh - qI’d-coh<‘-’10>m1'n-coh > <ao>m1n-inc B Qg-inc<ao>min-coh’

(6.53)
which in db become
\/2-* Vs V9 . v\ k _ 1 Vo v
<ao)hin-coh - Qd—coh+<éo>min—coh : <ao>m1n-inc‘ §'®d-inc+<éo>min-inc s
(6.53a)

all of which apply equally well for the on-off and binary cases, in form:
of course, the specific structure of @g depends on whether or not "on-off"
or binary signals are employed, and the mode of reception, cf. Tables
6.1a,b.

(III). Same Decision Probabilities and Input.Signals:

Here the input signal levels are the same, as are the probabilities of
decision, so that comparisons are naturally made in terms of sample size:
n vs. n*. This starts with °o=03’ cf. (6.52), and using (6.9), (6.16),
. . 2 = /al\x .
and (6.22b), (6.35) we obtain now, with (a’) . = <ho)min'

m*(n*) = 1m(n) (6.54)
generally, for coherent, incoherent, "on-off", binary signal reception,

etc. Applying (6.10), (6.17) specifically gives for both "on-off" and
binary operation:

(Opt. vs. Cross-correlator):

= &% = (2)
n%oh = %-cohcoh = Neoh/L ) (6.55a)
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for the simple correlator, and for the clipper correlator [cf. Sec. A.4-3
and Table 6.2]:

(opt. vs. clipper-correlators):

2
4w1E(0) ncoh

on = 12y | (6.55b)
E

in these stationary régimes.

For the incoherent cases we obtain similarly, from (6.38), (6.40),
(6.42), and Table 6.2, with Sec. (A.4-3), the more complex relations where
n*, n may appear implicitly, viz:

(opt. vs. auto-correlator):

2

. 2
(i). _"on-off" %r(L(4)+2L(2) [Q4-11) = — " ; (6.56a)
[(x*-1)+2(Q,-1)]
(21’

(i1). binary: ~ alBlga{1): M (845 (2) {0(2]) M- = n - , (6.56b)
[x1+2(q(21)-1)]
(21)_1,2

'?.1)
L@, (221 - — kL . (6.56c)
e [x*-1+2(q{?1)-1)1

cf. (6.30), (6.31), (6.33), (6.33a), ( 6.40), (6.41). Also, we have (6.24)
vs..Table 6.2, and (6.30), (6.33), vs. Table 6.2 (binary) and Sec. (A.4-3):

(opt. vs. clipper correlator):

n[-vZ i (0)+8wy(0)7Q4-1)1

2
(2) (Q -1)] = ZQn_]

(i). "on-off" n*[Lé4)+2L
(6.57a)
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(ii). binary: ( Qéngéélli.‘ n*[L(4)+2L(2) {0(21) 1})

_n[-/Z Wi (0)+8wy (0)2(0{21)-1) 7
ﬁ (20?”-1)

o (o2 , .
L_a(2)=a(]): %?Léz) {ng])-l} = 8n W]E(0)4(Q£21)‘])- (6.57c)

“o—=0—

The relationship between n* and n in these incoherent cases is clearly not
so straightforeward as in the coherent cases (6.55), and depends noticeably
on the degree of signal correlation, cf. remarks in V, Sec. 6.2 above.

6.3.2 Comparisons-Optimum Coherent vs. Optimum Incoherent Threshold Detection:

Just as we have compared optimum vs. suboptimum threshold detection algo-

rithms in the same modes (i.e., coherent, incoherent) of reception in 6.3.1,
(I)-(III) above, so also is it instructive to compare optimum threshold detection

for these different modes. Thus, according to Eq. (6.47b) we repeat the
comparisons of (6.47a), but now for coherent vs. incoherent detection, re-
spectively. Accordingly, we have

(Ia). Fixed Sample-Size (n) and Same Input Signals

<0/mm coh < >m1n 1nc

From (6.11b,6.27a) with (6.9) and (6.22a) we can write directly

* 2f, _
Bcoh ( on coh)/’2 <; )%1n coh®coh coh’
(6.48)"
2

BY = (g% )/2= () a, 1,

inc on-inc min-inc incinc

so that we can define
w=al 1", f(a_ . )2 (6.49)"
= %4t inc coh™inc ’ ’
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where

a“ =1 - n (stat. cases);

o)
O
o
=
I
-] TS
~
|
(@]
-
n |
—
S
~N
N
=
[o}]
O N
¥
Q|
o N
Nl

(6.49a)"

o
I A
=3
"
<
QU
=
o
o)

Qv
onrn
—~
A
—
N—

-

1/2 v
2 = ? a2 52 ? n ;? ‘ + 1 (stat.cases)
inc = \4 Noi®i 0 ' ’ (6.49b)"

since Sy = 1.

]

Here n represents the "fading factor" whose anatomy is examined in somewhat
more detail in II, Sec.7.1 ff. Therefore, we have directly (in these

stationary cases)

2 X
. (2) 2
o = L(4)[] ¥ éthy— (q, - 1ﬂ /6(1 - n)2nL(2) , (6.50)
and
B = w*(Bgoh)z , [cf. (6.11) - (6.11b)] (6.51)"

Using (6.48)', (6.49)' in (6.2), (6.5), and (6.27) enables us to write these
probability measures of performance respectively as

* 7 * *
~ P = (o1 (2 - -1 . 2
Pooine =7 01+ 0 I/FF {072 (o - 1)+ 07 (1 - 203
-] * * * .
-0 (1 - ZOLF)]} ;oop = (oc;:)coh : (6.52)
* 2 r -1 * 2 . _ 1 Eayt
Pecine ¥ 7 11 -0z 0" (1 -2 Peccon) 13 3 (P=a=3) . (6.53)

* *
Alternatively, we can express PCoh in terms of Pinc :

Poccon = 5 (1 + 0 L)V apy . - 1)+ 0711 - 20p)y V2
- ol - 2a;)]} ; ar - (u;)coh (6.54)"



* '] ( *)]/4 ]/2 .I .,
Pecon =z 117 0[5 -2 . ) s (b=a=5, (6.55)

where ¥* in the common stationary cases is given by (6.50)' above.

(ITa). Same Decision Probabilities and Sample Size:

In this case we may expect different values of the respective (minimum) input
signal (-to-noise ratios). Thus (6.52) is modified to

* * * * . * * *

*
PD,e—coh ) PD,e-inc; v O6—coh B Ob-inc; v Bcoh - Binc; Ncoh = Minc (6.56)

so that from (6.48)' it follows directly that

x .. . 1/2
6§> inc (2 con" coh/mc inc) /<
> R 6.57
L /a> < >1nc etc. ] ( a)

1/2

’ 8(“” ; <2> o (6.57b)"

L(4) 4 52) NERD

In the case of coherent signal waveforms (large n), we have [cf. (A.2-42e)]

Q,* § (slow fading) ;5 Q, *3 (1 - n)? (rapid fading) (6.58)"

|

2 ,
and since L(4) = 0(2L(2) ) in the highly nongaussian situations [cf.
Figs. 7.7, 7.8 (Class A), and Figs. 7.11, 7.12 (Class B)], we see that (6.57)'
reduces to

2 * ~ 8(1 - n) 2 * )]/2 , (6.59a)"
<a°>inc—slow v nL(2j (<a°> coh
AF 172
2 . 8 (é? ) , (6.59b)"
<a°>1'nc—fast ‘/nL(Z)U -n) %/ coh

resbective]y for slow and rapid fading.
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(IIla). Same Decision Probabilities and Input Signals:

For this case, the comparison is between processing gains, or in more
detail, between sample sizes n:0h’ n:nc’ needed to achieve the same performance
in the two modes of threshold detection, when the minimum detectable signals
are required to be the same. Accordingly, from (6.48)' again we have now

* 1

, or B = (y*)~
coh coh <: >>coh 1nc inc coh
*

. 2 -
Since \\aq;>coh B oh// conl! coh , cf. (6.48)', we get finally

x * o (4) 2)% (
Neoh = (@) 2 NincBeon [L + 22 (Q * s '])]

n--1inc

172
8(1 - n)° 2 . (6.61)"

With sTow or rapid fading and coherent signal waveforms (n >> 1), as before,
cf. (6.58)', (6.61)' reduces to

* * -
" = Minc COh/Z‘/Z(] =) ncoh fast ¥ Minc YBcon/® - (6.62)

coh-slow = inc ~ “coh

(We note that slow fading works to the relative disadvantage of coherent
vis-a-vis incoherent detection.)

6.3.3 Asymptotic Relative Efficiences:

It is a comparatively simple matter now to determine another frequently
used measure of performance, namely, the Asymptotic Relative Efficiency
(ARE), (for example, see [14], p. 242, Eqs. (78b, 80).) This is defined
for nonzero signal (6>0) and the same decision (i.e. probability) controls
[CN.P.’ CI.O.’ etc., cf. (6.11b) etc.], as the Timit as sample sizes be-
come infinite, of the ratio of the normalized "distances" of the two receiver
characteristics under comparison when the same input signals are employed,
in the same noise backgrounds. Thus, for receiver 1 vs. receiver 2 we have

(in the "on-off" cases):
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Tim
ARE 1} (1] = ~
on-off",6 >0 nysny>e I 0517

(a6, (<9(2>>]_<g<2)>0)

512)

_ lim (1), (2)
n]n2+w{°o /Go bs

(6.58)
where o{1)*(2)are defined in (A.4-12), (A.4-13) [(A.4-72), (A.4-74) also]

for general (most of the time) suboptimum systems, where 30] (2) are the
respective variances of the receiver algorithms g(]), 9(2 under Ho’ cf.
(A.4-9), (A.4-29); (A.4-71), (A.4-73). For binary signals (6.58) becomes
directly

S(21)

_ lim Y
ARE binary,6>0 ~ nl’"Z*”{ 0(21) } . (6.58a)
02

Applying the general relation (6.6) in its canonical form (6.48) here
to (6.58), we see at once that the ARE for comparison against the optimum
detector become simply

o]

= lim o Zoy _ Tim (*)
ARE* 650 = n,n*>w 0,3) = N, N*c ‘I’d_( ) (i]), (6.59)

for "on-off" and binary signalling. In the case of suboptimum system com-
parisons (6.59) becomes

1i %' Ti o
ARE = 1M e = 1M 9 (<1) , (6.59)
1/2 00 Moo d-( ) NysNy> 0325 -
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where systems 1, 2 are so chosen that this limiting ratio is always equal
to or less than unity. (Of course, if systems 1 and 2 are both optimum,
the ARE is unity.) Again, we remark that narrow-band as well as broad-
band signal types are incTuded canonically here.

From the text above (cf. Tables 6.la,b, 6.2) we easily establish the
following useful examples:

I. Coherent Reception:

(i). simple correlator: AREéoh =J;/L(2) (<1)s ["on-off";binary]

optimum _ {6.60a)
(ii). clipper correlator: ARE’gOh =\hw]E(0)2/L(2) (<1); [“"on-off"; binary]

optimum (6.60b)
(ii1). simple correlator: ARE(]/Z)coh= 1/4w]E(0) (<1); ["on-off", binary]

clipper correlator

(6.60c)

IT. Incoherent Reception:

(i). simple-correlator:
optimum
ARE* - h"“{402/(L(4)+2L(2)2{Q -13)
inc|, _opf Mo M : n
-(x4-1+2{Qn-1})}2 » cf. Eq. (6.38); |(6.61a)
. ; 2
(1),.(2). _ lim (zrﬁ (8), ., (2)2,4(21)
8#2"c ( MRERc| = pan(dy (AR AL M b))
inary 1 -
< '(x4-1+2{Q£2])-1})}2,Cf-EQ-(6-423) (6.61b)
1/2
1(21) |
“0—=0—= inc|,. n->e — R
binary L(2) [x4r1+2(Q£2])—1)]
cf. Eq. (6.42b). (6.61c)

+Note, however, that ARE = 1 does not necessarily mean both algorithms are
optimum, cf. last 7 of III.
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(ii). clipper-correlator

optimum

5 2 2 i

. f[-V2 wi(0)+8w,-(0)°{Q,-13]17 2
AREgncl = lim B 1 — ] |(6.62)

on-off (ZQn'])[Lé4)+2Lé2) {Qn_]}]

1

- (1-72 Wi (0)+8u; - (0) 21 {21137
(1)#3(2) ARE* = lim [-72 ( ) ]E( i ] ¥4 (6.62b)

"'0——0'—" inc

binary "% (20521)-1)(Lé4)+2Lé2) {Q§21X4})

(1), (2) 2, (2)2
a' ’=a‘“’: ARE¥* = (4w,-(0)“/L ) s : (6.62¢)
—0—0—= 1nc‘binary 1E E
(21) (21) : o4
Here the signal factors Q ,Q n , are defined specifically by

1 2 2 — 2
T+ _Z LY cf. Eq.(6.25); m m; 5 amaOJ/a0

m

"on-off": Q
= (5595 (6.63a)

2)> o (25). (am ni1,{15))2
2(1)4,(2), Qrgzn:

—o0——0— »
(@25
Eq. (6.31); (6.63b)
a{l=a (). {2 -1 e 1 5"l o (§S) p$}s))2 . Eq. (6.33) . (6.63c)

The noise parameters are L(z) = <22), L(4) = <kzz+z')?>o, cf. (A.1-15, 19b),
as before.
We have also the comparison of suboptimums here, cf. (6.60c):
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(ii1). simple-correlator .

clipper correlator”

]
2 1
ARE - Iiml' 40, {2Q,-1} ’
1.nc'on-off el 7 : 2 2
[X -]+2(Qn_])][-JEW'IE(O)II+8W1E(O) {Qn']}]
= Eq. (6.61a)/Eq. (6.62a);
q. ( )/Eq. (6.62a) (6.64a)]
(21)2,,,(21) z
a(])#a(z) ARE. i} 11m/ 4Qn {2Qn -1}
oo 1nc‘binary et Py y 2,,(21) 1,42
[x -1+2(Qn-1)][-¢§w]E(o) +8wy(0)74Qp " '-11]
1
~(21) 2
L2, e _timf_(G7 1)
00— inc|,. nsofl —r N
bi nary [X4_]+2(Q|S|2] )_] )]W]E(0)4
= Eq. (6.61c)/Eq.(6.62c). (6.64c)

(We remember that when the clipper correlator is optimum, i.e. when the
noise is Laplace noise, cf. Sec. A.4-3, we must use the optimum forms
LF:E -> LE’ etc., cf. (A.4-39)-(A.4-46), where E(4) > L(4) > Lé4), etc., so
that in the incoherent cases specifically the ARE* = 1, as required.)

As some simple examples, let us consider coherent reception (for
general signals) when (1), the noise is gaussian, and (2), when it s

LaPlacian, e.qg.:
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X272 [ L{®)oq k2=,

e E
= : | (6.65a)
gauss s Eq. (A.1-22).

Wg(x)

(2)_p. (2=
1 _lxl/é- LE —2a (X "1)'
e (x) S : (6.65b)
1E'"/Laplace = Eq. (A.4-65a) .

We have at once from (6.65) into (6.60) the simple results

(i). simple correlator: ARE* =1; ARE* = 1//2 (6.66a)

opt. coh gauss COh’Lap]ace
. . 2
(i1). clipper correlator: ARE* =Y—g ARE* =1; (6.66b)
opt. Coh | auss 1™ Coh || aplace

1
Laplace /7 '
(6.66¢)

o _ -1. _‘{g_ . simple correl.
(iii). ,simple-correlator y ARE* “Ix 5 <CTipper correl.

clipper correlator ¢

Ohlgauss

Equation (6.66) shows that there is not much difference 0(< 2db) between
simple and clipper correlators in these threshold cases when they operate
in gaussian and Laplace noise, to which they are respectively optimum.
However, when the usual Class A or B interference is the principal noise
mechanism, the simple correlators (although optimum in gauss) have been
found to be very suboptimum here 0(20-40db or more), [13], whereas the
superclipper correlators (at least in the coherent regimes) remain only
slightly degraded 0(1.0 dB)  from the proper optimum processor [42], [45].

We recall from Sec. 6.3, V above, that depending on the coherence of
the signal during the data acquisition period (0,T), the signal factors
Q> etc., cf. (6.63), are 0(n"), O<u<l. Thus, for incoherent reception
and signals made comparatively incoherent (by combinations of rapid fading
and doppler or by the mode of observation: independent signal samples,
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for example), we have p=0, i.e. Q, is essentially independent of n, and then
the results (6.61)-(6.64) remain unchanged. However, when:the signal re-
mains highly correlated during the observation period, Q_ -+ O(n>), and
(6.61)-(6.64) reduce to the somewhat simpler forms:

ITI. Incoherent Reception; Coherent Signals:

(i). simple correlator, ARE* = 1/L(2) ; (on-off and binary) (6.67a)
optimum ’ inc

(ii). clipper correlator,

T : AREX = [4w]E(0)2/L(2)] ; (on-off and binary);
(6.67b)
(iii). simple correlator . _ 2+ . .
<Tipper correlator’ ARE, . = []/4w]E(O) ] ; (on-off and b1nar{). )
6.67d

Comparing these results (6.67) for the incoherent cases with those for the
coherent situations (6.60), we see that the ARE's for the former are just
the square of the ARE's for the latter in their respective comparisons,

when the desired signals are fully coherent in structure and are so observed.
On the other hand, when this coherent signal structure is partially or totally
destroyed, the corresponding ARE's, Eqs. (6.61)-(6.64), are further reduced,
as we would expect. We also observe that signal level symmetry [aé])=aéz)]
considerably simplifies the result, cf. (6.61c), (6.62c), (6.64c), vis-a-vis
the asymmetric cases [aé])#aéz)], including the "on-off" situation. The

ARE's for coherent reception are larger (and sometimes much larger) then

their incoherent counterparts: (6.60) vs. (6.67).

Finally, we remark that although the ARE's, 1like output signal-to-noise
ratios (oé*)jz, (6.6), processing gains (H( )),and minimum detectable signals
(<a§>min)’ are useful measures of receiver performance and performance com-
parisons, they are not directly (or linearly) related to actual performance,
as measured by the appropriate decision probabilities (PD, Pe’ etc.).
Furthermore, the ARE's are limiting forms (n»=), whereas in practice one
deals with finite n (>>1).
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Moreover, closely related to the essentially second-moment character
of the ARE's (cf. 6.58)), is the fact that they can be ambiguous measures
of performance. This may be demonstrated, for eXampTe, in the case of
coherent threshold detection, Sec. 6.2, I, II, where for the suboptlmum
detector we choose the opt1mum form (4.1), but without the bias, B*

Thus, cz-o* s ((g <§> )( = 0*2 so that the ARE = 1 This sa e

s . ys that
on the bas1s of the ARE the two algorithms are equivalent. But <g>
= o*%+log y, <g), = Tog u, so that (2 32) becomes (u=1) Pe —{1- l o(o2/v2)}
which is to be compared with PY o 2] e(o*/Z/_)} S1nce @(x/2) < 2-9(x),
x>0, 51ear]y P > P* in th1s examp]e In fact, Po = 1/4 for the usually
large Tp- Thus, on the basis of the more comprehens1ve probability measures,
the algorithm without the (correct) bias can be clearly inferior. Further-
more, this subopt1mum algorithm is not asymptotically optimum (AO), since it
is (u=1) G (032,0 0 ), under H H], which does not obey the n.+s. conditions
(A.3-8,9).

For all these reasons, then, these latter quantities (i.e., PB, etc.)
are the more complete and unambiguous descriptors of performance and are -
ultimately to be preferred to the ARE's when receiver performance is to
be assessed and compared under the practical constraint of finite sample
size (T<<n<=), not only for the threshold conditions postulated here, but
for all input signal levels.

6.4 Input Signal Conditions for (Optimum) Threshold Algorithms and Performance

There are two conditions on the maximum Tevel of the input signal
a§(>0) which must be obeyed‘-!T if the detection algorithms g; are to remain
not only LOBD's but AODA's as well (as sample size becomes larger).

As we have already noted (cf. Sec. 2.4, Secs. A.2-1,2,3,4, etc.), the
first condition is to insure that var],eg; = var go’ogﬁ, cf. (2.29), (A.2-14),
(A.2-40), (A.2-50b), which in turn is required for asymptotic optimality
(A0), cf. (Appendix) Section A.3-3, as well as consistency of the test
(détection) as n»~ and for providina the associated proper bias, ﬁ;.

fIn the limiting case of continuous sampling on the observation interval! we
shall discuss this point and its relation to the discrete sampling cases of
our current analysis in Sec. 6.4 III, following.
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The second condition stems from the fact that the coherent LOBD is
a truncated expansion of log An’ which omits the "incoherent" term 0(82),

so that it is possible in some nongaussian noise situations that, mathemat-
ically, incoherent LOBD's perform better than coherent LOBD's. Of course,
physically this appears to be a contradictionT: coherent detection should
always be at least no worse than incoherent detection under otherwise the
same conditions, since the former employs the additional relevant information
about the signal phase (or epoch). Consequently, there can also be an upper
1imit on input signal 1eve1_1§§) beyond which the truncation [i.e., omission
of the incoherent terms, 0(82)] of the coherent algorithm Teads to this
contradiction in performance, and hence beyond which the associated perform-

ance measures are not used.

Of course, the algorithms themselves are_employable at all signal
levels (0<a§), but are no longer optimal as ag is increased outside the
lesser of the two limits indicated. Their performance must then be re-
evaluated: if n>>1, the Central Limit Theorem still applies, but cfﬁ # 035,
]’Og; # varo’ogﬁ, and it is then possible for "coherent" detection
by these now suboptimum algorithms to be inferior to the corresponding

"incoherent" detectors.

i.e., var

I. "On-off" Detection:
Let us look further at the "second condition" noted above: viz., from
(6.2), (6.5) (as well as (6.5a), (6.5e) in the binary signal cases):

(Opt.) Coherent Det > (Opt.) Incoherent Det:

93-coh = %8-inc’ (large n). (6.68a)

This insures (for sufficiently large n, where (6.2) etc. apb]y) that
(optimum) coherent performance is never worse than (optimum) incoherent
performance under otherwise the same conditions. For the "on-off" cases

See footnote, page 102.
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from (6.9) and (6.22b) we can write (6.68a) as

2\* 2
JH20h<a0 min-coh kd 1nc <a >m'|n inc °® . (6-68b)

and, using (6.10), (6.24) we get at once

(4) 5 (2)2
L'/ +2L (Q -1))
< o>m1n coh —-Hlnc < >m1n -inc ~ { g (2) - f < > min-inc ° . (6.68c)

Equation (6.68c) is to be used in conjunction with the first condition
(on ag), i.e., that vary oI = varo o9%» here (A.2-15a), which is speci-
fically in the stationary noise regime:

Eq. (A.2-15a): coherent:

2 ~2 =2
L(8) 7 a2 3t
2\ * 3
o lmin-con* 45 = 2, L( : 2, (2)%2,,, (2)°
IZ i34t (a i/35)-L A X (a01 oa(m“J oi 03)5153
N (6.69)
i = %i/¥3 (6.69)
Eq. (A.2-42): incoherent:
2
L4)2l2)(q 1)

(6.70)

2
Codmin-nc *< ¥ = ~T8)
o/min-inc Y |L2 +6L(2)L(2 2)Q +L(2) n|

. . . - _ _.2.
In the important special cases of slow and no fading (aoi—ao’aoi a3
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A my = 1), or rapid fad1ng,(ao1aOJ = 3,5 35;),Eq. (6.69) simplifies
directly to

L(z) _.<Q2>o

X5 = i 7 (6.71)
{ (232)/2_(]_n)L(

Similarly, with incoherent signal structures (A.2-42b),or totally coherent
signal structures (A.2-42f), we have

(Incoherent), * = L(4)
structure 0 L(57 w6 (2) (2,2)
(coherent ): * = L(z) (Q. = n/2;R_= 2n) (6.72)
structure Yo (2,2) (2)2 ? n n ’ )
3LV T/42L
1

where we take the maximum value of F; in (A.2-42f), for the strictest

condition on 0<a§ << 1. [Some numerical values of (xg,yg) are shown in
Figs. 7.20-7.22 ff.]

Then, as the second condition, (6.68c) is used to set additional upper
bounds on the input signal (mag). Letting

_ /.2\* . _ O\ ok s
X = <ao>min-coh » Y= <a0>min—inc oI = IE /Mo (6.73)

we have for (6.68c)

P > 2 . .. X<<x39EqS,(6-69),(6.7])
2nd condition: X = I*y : with: 1st. condition:
y<<yg,qu.(6.70),(6.72)

(6.74)
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The points y=x, or 1/7* > x =y, which at (1/7*) or below the curve
X = n*yz, and which are within the region of individual constraints on

(x ,y); e.g., the dotted 1ines in Fig. 6.1, are all permissable values of

2

(ao min—coh,inc The curves y~n* = x represent the limiting condition

* 'l in-
Pa-coh = Painc® OF PS-coh = Pb-inc- When we require coherent and in
coherent performance to be equal, i.e. when we specify the limiting

probabilities (PX , etc.) which we can accept, that portion

D-coh ~ 2 D inc
of the parabola x = m*y“ which lies w1th1n the rectangle (x,y) [<<(x Yo )]
determines the acceptable values of (a min-coh,inc"
Accordingly, to use the various relations in Section 6.1-6.3 to obtain
minimum detectable signal (or maximum range, cf. [34]), when either a purely
coherent or incoherent threshold detection algorithm is employed, we_
calculate the appropriate quantities, cf. (6.74), for both the coherent

and incoherent regimes, in order to obtain physically acceptable results,

even though we may be interested in only one or the other mode of detec-
tion. Thus, we may proceed as follows for minimum detectdable signals(in these

stationary cases):
A. Minimum Detectable Signals:
(1). Calculate {az)

min-coh from (6.11) for coherent reception;

(2). Calculate (a ) from (6.27) for incoherent detection;

min-inc

(3). Use (6.69) or (6.71) for Xg3 (6.70), or (6.72) for Yo» to deter-
mine the coherent/incoherent conditions for equal threshold
variances;

(4). Compute x = n*y , (6.74), for the various (62>m1n and Tocate
the results of (1), (2) within the region x > w*y“, cf. Fig.
6.1. Physically acceptable results here are (usually) those for which
the calculated values fall within the bounded (i.e. shaded)

region [but see remarks in III ff.].
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Yo |— —_———— —_—

Case Ia-(6.48)"' |

Yimax (<o)

* *
Xmax(<<xo) %o
Figure 6.1. Sketch of the relationship between x<= é2>*. ) and
o\ * ] No/ min-coh )
yl= <:aoj>m1n—inc , showing the domain (shaded) wherein
"coherent reception" > "incoherent reception," for physical
applications (same sample size, n).
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II. Binary Signal Detection:

The same considerations apply for optimum binary signal reception
as above for the cases of "on-off" detection, e. g » in addition to the
condition of equality of variances (var] eg(Z]) =var, 09(21) ) we must
satisfy (6.68a) as well. Here, of course, we rep]ace H*oh by Hég;) s
etc. <a2>m1n by <a2>(2]) , etc., and Q, by Q(Z]) in (6.68b,c), where
specifically we employ (6.12), (6. 13), (6. 29) (6.31). The first
"small-signal" (or equal variance) conditions, analogous to (6.69) etc.,

are now given (in the stationary régimes) by

Eq. (A.2-50a) .

(coherent)

(D" (e

min-coh (]
Eq. (6.14)
L(2)( 2<Ae1>2)2
2
l Z<Ae >2{<(a 2>L(2 »2) /2- (<a(2) »(1 >)2L(2) }
22 < s Apan e = 1 (2),(1) 2D (1)
+ é% (Aﬂi><he)3~(si-sj {35433

[(Gag)) 2oy 13, (6.75)
(0,) = <a01 ; (2)y_ <(” (My (6.75a)

cf. (6.69), (6.69a), and
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Eq. (A.2-57).
(incoherent) -

L4 2)% 21y

GHEE
ml: ;;; L;6)+6L(2) (2, 2)0(21) L(2) R(21)
Eq. .

(Eq. A.2-59) , (6.76)

(21), p(21)

for slow or no fading and stationary noise, in which Q are given

by (A.2-60a,b) explicitly.
For the important special cases of signals with no fading, in symmetri-

cal channels, we have (A.2-50e) for x(Z]) , Viz.

(2) ¢ (=(2) _=(1),2
L 3 3
(21)* _ 12(51 i)

[no fading; sym.]: X5 » (6.77)
| 0 (2:2) 2. (20735 (2) 5 (125 (20, ()

and from (A.2-62), for both coherent and incoherent signal structures

(21)* . L (4)
y0 |L(€)/2+6L(2)L(232)| ’

(6.78)

cf. (6.71), (6.72) above. Still other forms can be obtained from (6.75),
(6.76), depending on channel conditions. In any case, (6.73), (6.74)
(21)* » etc., now. The domain of input signal
levels for app]1cab111ty of the opt1mum algorithms is 11kew1se sketched in
Fig. 6.1, where, of course, x <£2) min-c h or <a(]) min-coh® €tc-
there are thus a pair of (x,y)'s now, when ajy 2) # agl) but only a s1ng1e
set (x,y) when the channel is symmetrical: aéz)—aé1) = a,. The general
procedure for determining minimum detectable signals is again given by A.

apply generally, with x* > X,

above, suitably modified, e.qg.:
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A. Minimum Detectable Signals:

2\ (21)* .
(1). cCalculate <ao>min-coh’ from (6.14);

2\(21)*
(2). Calculate <ao &inzinch from (6.29); (or 6.33);

(3). Use (6.75) or (6.77) for X%3 (6.76) or (6.78) for i (e.qg.,
the equal variance conditions on both coherent and incoherent
reception;

(4). Compufe X = n(21)*y2, (6.74), n* » n(Z])*, where n(Z])*=H§§l)*/Hé§;)*,
cf. (6.13), (6.30).

III1. The Second Input Signal Condition -- Optimum Incoherent vs. Coherent

Detection: Discussion

Qur starting point is Figure 6.1. For the moment let us impose the
"coherent-vs-incoherent" condition posited in (6.68a) above, here, of course,
for discrete sampling such that the noise samples are statistically
independent--our universal condition in this study, cf. Sec. 2.4 et seq.

Then, we can make the following observations about Figure 6.1:

(1) The parabola (6.74) is the contour of Case Ila, Eq. (6.56)'

et seq., for optimum incoherent threshold performance being
equal to optimum coherent performance.

(ii) The straight line (y=x) embodies Case Ia, Eq. (6.48)' et seq.,

where coherent performance is better (i.e., smaller error
probabilities) than incoherent performance, with the same

*
sample sizes, when <é§ m:n-coh(zx)=y5‘é§>ﬁin-incfj/ﬂ*' For
x=y larger than xIII=yIII=1/W* coherent performance is inferior
to incoherent performance.
(ii1) At x=y=1/7r*=xIII=yIII we have Case IIla, (6.60)' et seq., where
N Meon (>>1) usually.
(iv)  Here X%, y§ are bounding values obtained from the basic Condition
I, namely the "equal variance" condition which is necessary to
insure asymptotic optimality at small but non-vanishing signals.
(Explicit eximples relating x;,yg to the associated minimum detectable
signal (@, / i, are given by Eqs. (6.69)-(6.72) above.) If Xax*Ymax 2

the largest input signal values permitted, the allowed minimum detectable

re
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signals (x,y) must obey the inequalities x<x <<x3 or yfymax<<y3‘ Here

max
the usual quantitative choice of the inequality (<<) is 13 dB or 15 dB

in practice. (Of course, the value given to "<<" is arbitrary, dependent
on a reasonable choice of what is meant by "small" signals.) Accordingly,
the rectangular (shaded) region bounded by Xnax *Ymax

the domain wherein the A0, or equal-variance condition holds practically.

) in Figure 6.1 is

Now, from Figure 6.1 it is clear that it may be possible for these
threshold algorithms to be A0 (as well as LOB) and have coherent detection
with Targer minimum detectable signals, or larger error probabilities
(inferior performance), or both, than (AO) incoherent detection. When
this happens, we call the region of (x,y) values an anomalous region,

G0
with respect to the conditions \a min-coh < <t >m1’n inc? and coherent
performance > incoherent performance. Thus, in the region formed by

y=x and the parabola (within x ) we have the "anomalous" situation

max *Ymax
y>x, with incoherent performance better than coherent. The region bounded

by the 1ine y=x, the parabola, x___, and y=o0 is the non-anomalous region,

max
as shown in Figure 6.1.

The results of Figure 6.1 show that for both optimum coherent and
incoherent threshold detectors which are A0 (as well as LOB) one can have
any combination of minimum detectable signal and performance inequalities
for the same data sample size. This, in turn, means that the so-called
Condition II, defined by Eq. (6.74) is not (for discrete, independent noise
samples) an ultimate constraint on the validity of "practical" optimality:

we can disregard Condition II as long as Condition I--the equal variance

condition--is obeyed. Thus, there is ultimately only Condition I, which

sets a bound on the largest value of input minimum detectable signal for
which the A0 still obtains (cf. Appendix A3). Moreover, we may expect
Condition Il to be automatically satisfied in the 1imit of continuous
sampling. The formal use of Condition II in the discrete case, however,

is helpful in identifying the apparently anomalous reqgions of behavior.

Of course, with continuous sampling only the "regular" region is occupied,
because then coherent detection cannot be any less effective than incoherent
detection for otherwise the same conditions of operation.
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This follows in as much as more signal information (i.e., epoch) is
used in the coherent cases than in incoherent reception, while all the noise
data, viz. those contained in the n-th order pdf's wn(f)N as n»>~, are employed
in either observation mode. [We note that the derivatives of wn(f)N’ as n-oo,
contain no additional noise information.]

The explanation for the anomalous behavior of the optimim incoherent
vis-a-vis the optimum coherent detector lies in the different effective
amount of relevant signal and noise information available under independent

(noise) samples. Although all signal (i.e., waveform) information is used

in both detection modes, with only the epoch information lacking in the

+

incoherent cases', more relevant noise information is available in the

incoherent cases. This is apparent from the fact that for coherent

detection we require 2(=%§ 1og w,(x)) in the algorithm and L(z)(5<£ 3>0) in

the performance measure, whereas both 2 and &' are needed in the incoherent

algorithm, and L(4) (= <(22+2')€> (2), in its performance.

0) as well as L

In addition, there is further information embodied in the way L(z) and L(4)
appear in og—inc’ along with their combination with signal structure (Qn),
cf. (6.24); for example, the functional form of II* , as well as its

individual L(Z), L(4), and Qn components. ne
Whether or not the use of this added information is enough to offset

the loss of epoch information in the signal will depend, of course, on the

specific nature of the nongaussian noise, signal structure, the signal's

interaction with the noise, and on the probability controls (PB, ak, etc.)

under which the receiver is set to operate. For signals which maintain their

structure (e.g., no doppler smearing) we may have "anomalous" behavior, i.e.,

the incoherent minimum detectable signals are smaller than for the corresponding

For simplicity, we confine the argument to the important limiting cases
where total waveform information is available to the receiver. This,
however, is not a restriction on our general argument. We note, also, that
with proper choice of epoch and sampling intervals in the coherent cases,
discrete signal sampling is fully equivalent to continuous signal sampling

on the observation interval (0.T.).
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coherent cases (under the same performance measures). On the other hand,
incoherent reception of "incoherent" signals is always inferior (in the sense
of larger minimum detectable signals for the same controls) to coherent
reception of coherent waveforms, as we would expect. Specific examples

of these behaviors are presented in Sec. 7.4 ff. Finally, even in the

gauss noise cases (L(2)=1, L(4)=2) we may expect anomalous behavior for the
same reasons. [An academic exception is the case of the completely known
signal, for the reasons cited in Sec. A.3-6, {, esp. p. A66.] The general
magnitude of the anomalies in <§§>I:”]appears to be 0(2-3 dB), cf. Sec. 7.4 ff.

A11 our comments here apply equally to the earlier results Sec. 5.1, V, [34].

IV . Remarks on Suboptimum Receivers:

Similar conditions on the largest "small-signal" inputs to suboptimum
receivers, giving equal variances under Ho, H], etc. are derived in Appendix
A.4, cf. (A.4-10) for the coherent cases and (A.4-30) for the incoherent
detectors, generally. In the case of simple correlators these equal variance
conditions are given by (A.4-59), and for energy detectors, by (A.4-63),
while for hard-Timiting or "super-clipper" correlators, these conditions
are given in (A.4-70). For binary signals, see the remarks in Sec.

A.4-4.

However, when these receivers are suboptimum [as they will be in most
instances unless they are operating in the noise for which they are "matched,"
i.e., become optimum, viz., gauss noise (A.4-50a) for the simple correla-
tors, "Laplace noise" (A.4-50b) for the hard-limiter correlators], there
is no reason to assume that coherent reception will necessarily always
be better than incoherent reception for otherwise the same reception con-
ditions. Such a situation will depend on the detectors themselves vis-a-vis
noise and signal. Consequently, we do not impose the second condition,
cf. Eqs. (6.68), on the magnitude of the input signal, so that only the
conditions on equal variances referenced above are needed in the evalua-
tion of performance using the (suboptimum) results of Section 6.1, etc.
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O0f course, these suboptimum algorithms can be used at all input signal

levels, but then var]’egfvarO 09 and the large-sample (n>>1) expressions

for P

6.5 The Composite LOBD:

We have shown (in Appendix A.3-6) that the composite LOBD,
which includes both coherent (8 > 0) and incoherent processing (62

D’ Pe’ etc., cf. Sec. 6.1, must be appropriately modified, along
the lines of (2.23)-(2.27), cf. (2.26), (2.27) specifically.

= 0), is also an AODA, and in the "on-off" cases is given explicitly by

*
In-comp Tog utB}

log u+LOBDcoh+LOBDinc

comp+'_ z [-22; <b1>513+(2 25 +21613 <eiej>]

where the bias is

é: ~comp E
iJ
- B; coh Bﬁ inc’
and the variance ogﬁ —comp (=var
n-conp ~

*2 + *2_
%n-coh © %on-inc °

The equal-variance, or "small-signal" condition that oﬁﬁ
given by (6.69) or (6.70), whichever is the stricter.
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0,0 “n-comp

$2)a, Yo, +y opPrai®- L(z) oy 2Ly

) is given by

1—_5{4[1(2)<ei>2 <616J>2 4) 2L )6 +2L(2) §2)]}
1J

2 5*2 here is
Note that there

(6.79a)

(6.79b)

(6.79c)



is here no "second-condition", cf. Sec. 6.4, I, II above, since there

is now no question of a purely coherent processor in possible competition

with an incoherent algorithm to produce possibly inferior performance

vis-a-vis the incoherent algorithm: there is just a single, albeit com-

posite algorithm. ,
Performance, as measured by the probabilities P}, or P%, cf. (6.2)

- follows at once on applying of ~comp therein; (cf. Footnote p.55 ).
With binary signals [cf. II, Appendix A.3-6] we have the extensions

f (6.79), viz:

(1) | 10g wi@D* z{ 21, {2235,

gn-comp n- comp 2

Hlog5%0385 510 42 OJS1SJ>(2) ~@oi%03° >(])]}’ (6.80)

2
in which the bias and associated variance 0(2])* are specifically

on-comp
~ * n
g(21)* _%_ 23[41_(2 {<a(2) (2)\2 <ac()1_)s1§1)>2}61.j

n-comp

2 2 2) (2 (1), (1) (1 (12

+E< (2),(2) ( ) ( )> <é )a ( ) ( § )) ]
, |
-[(L1§4)-2L1.(2) )61.j+2L1§2)L§2)]] , (6.80a)

_ ax(21) | p*(21)
B; coh * Bn-inc

115



2 n
21)* _ 1 2 2 1).2
0c()n-t):omp "7 1.2‘].(4L1§ ){<am-s1->( )-<ao1-s1.>( s %

2 1)42
Wao%035155) - ~Cottagsssy) ]

2
({22 )61.j+2L1§2)L§-2)]) ,

2 2
= G(21)*%  (21)*
% oh +Oinc . (6.80b)
cf. (A.3-35,36). The "small-signal" condition (cﬁn-comp = ng—comp) is

given here by the stricter of (6.75), (6.76), or the more special cases,
(6.77) vs. (6.78). Performance (PS, P;) is obtained by applying (6.80b)
to (6.5a), (6.5e).

Various suboptimum composite algorithms are suggested as extensions
of the previously developed simple and clipper-correlators discussed
earlier in this Section (and in Appendix A.4). Thus, parallelling the
optimum examples above, we have from A, B of Sec. 4.2 above:

I. Composite Simple Correlators (H] VS. Holi

]

In-comp = 1°9 ¥*Bp_comp* ?'23{2X1<91>61j+<?1ej>xixj}’ (6.81a)

where

A

1, 0 2. ,.2 2
Bn—comp - 7t i%(2{<ei> +@1>}51j+ 9i9j> ). (6.81b)

The Ho-variance of g is the sum of the variances (A.4-57), viz.

n-comp
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x4 3

~9 _n o (X§" » 5
Sonecamp = Jy (o) 6ro ) 1260 10)" (5.810)

II. Composite Clipper-Correlators (H] VS. Holi

. n
= Togu + B Z(aij/?<éi)sgn xi+<éiej>sgn X; sgn xj), (6.82a)

g +

where

>

n
Br-comp =~ 7 iEj[4{(<e1.>2_<e1?))/f e (0) 4+ @208, 5

#0040 ;)°[8W; £ (0) 1wy (0) = 1/Z Wi (0) +8w; £ (0)316,511 . (6.82b)

The Ho-variance is the sum of the variances (A.4-68), viz:

. n |
0gn-comp - g%({2<91>2'<?$>2}51j+2<?19j>2) . (6.82c)

The "small-signal" conditions here are the stricter of (A.4-59) for the
simple correlators, and the stricter of (A.4-70) in the case of the clipper-

correlators.
N
For performance in the above (and generally), we need both qgn—comp and

the quantity Go-comp’ defined by

<gconp>1fSPcomp>o _ [numerator of (A.4-12a,b)+numerator of A.4-31a,b)]

- 2 1/2
72 S comp /2 [{Eq. (A.4-9)+Eq.(A.4-29)}=0C ]
= So-comp(F) , (6.83a)

V2
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and

72 Oon-comp /2_ con-comp 272

(Seom <gcomp>o o-com(F) (6.83b)

Then, in particular, for these composite correlation detectors we use the

results of Appendices A.4-2,3 to obtain the specific values of L(F)E’ Lézé,
"2
etc. which appear in both oo,(6.83a,b),and in Ton-comp (cf. (6.81c),

(6.82c)). Performance is then calculated using these values in (6.2)-(6.5),
as appropriate. [We recall [D, Sec. A.4-1] that these suboptimum algorithms
become optimum against the appropriate noise, e.g. gauss for the simple
correlators, "Laplace" noise for the clipper-correlators.

A11 these (optimum) algorithms are, of course, LOBD's: each giyves the
minimum error probabilities for all values of input signal (6 =‘ﬁ§E—) in
some finite range 0 < 6 < e(<<1). But each LOBD has a different range, e.g.

€coh 7 €inc 7 ecomp; in fact, ecomp €coh = €inc? since LOBDcom (620) is
never worse than LOBD oh’ which in turn is neyer inferior to LOBDlnc’ for
the same common channe] conditions, proyided the input signal Teyel Qwa )

is not too great (i.e. the "small-signal" conditions). For yery small
signals we may expect that LOBD, + (LOBD)Coh, (6>0), since the incoherent
component (0<ez<<6) is now negligible vis-a-vis the coherent contribution.
On the other hand, if 6=0, .- (LOBD)c0h=O, and LOBD -(LOBD) c» With the
range €; ..

Finally, the composite LOBD is generally recommended, provided the com-
plexity of the processing occasioned by the additional algorithmic component
(LOBnlnc’ or LOBDcoh) can be tolerated practically. Otherwise, in the
coherent cases we omit the (LOBD)inC-component; hence the considerable atten-
tion to the coherent algorithm (6>0) now and previously. [It is, of course,
analytically much simpler than (LOBD)inc’ which can be an additional reason
to focus on (LOBD)Coh when 8>0.] As noted in Sec. A.3-(I,IT), a rare special
situation arises in the gaussian case for the completely known signals: the

comp
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composite LOBD is replaced by the exact, (LOBD)coh form. When the noise is
non-gaussian, we proceed as above.

ITI. Composite Threshold Detectors: Minimum Detectable Signals:
We conclude Sec. 6.5 with a derivation of the minimum detectable signal for

these optimum composite threshold cases. Combining (6.9) and (6.22b), for example,

remembering from (6.79c) that 0*2 = 0*2 + %2

= o . we can define at once
on-comp on-coh on-inc’

. " " : 1 i 2N\*
(in these "on-off" cases with stationary noise) <‘-"o>m1‘n-comp by

gx2 = 2 §2>* a_  I* . +2 a2> * a2 I (6.84)
on-comp ~ o/min-comp ~coh”coh 0/ min-comp “inc inc ’
From (6.2) or (6.4) we get directly
% 1 1 1
—=R = 2671 (1-2P%) , or {67 (2p§-1)+67 (1-20))=C;  or Cy p » (6.85)
/'2- e .U, P
= /B{ 0. =B{.p.

respectively for the Ideal Observer or the Neyman-Pearson Observer, cf. (6.11b).
Applying (6.85) to (6.84), we obtain the desired expression for the minimum
detectable signal associated with this "on-off" composite detector, viz.

AN 21 3coh’coh J]MB*ainc Linc -1
0/ min-comp 2 ;g Hf ; H* ’
2 inc 1nc2 coh™coh (6.86)

B* = Cr.0. o Cyp. >

or, using (6.10), (6.24), with (6.49)', we get explicitly in these stationary
cases
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.
Qo min-comp 2 1+ — -1 . (6.86a)
L2120 (g 1) 2nt ()

For example, in the case of signals with incoherent structure, Qn=1,

and .°. I*  -0:
B* _ 2Vy*
VH* - <a0>min-1'nc (6.87a)
inc
4

. 2>,*
t <éo min-comp

coh
—_— (6.87b)
'2L[|)n

Similarly, for signals with coherent structures, e.g., sinusoidal pulse
trains where Qn = n/2, or = n(]-n)2/2, cf. (A.2-42e), for slow or rapid fading
respectively and large sample (n>>1), we get from (6.86a)

Coh. struct.:

- 62>* = 4:”1_-2) {V/]+B*/2('|—n)2 _]} (6.88a)

o/min-comp
slow

- 4 B * 2
. WV; ; (l-n)‘ 5 B*>>2(1-n)° ,

2 * x> 4 = 4 —_— -
(a2 min-comp = ) VT -1 E vE .,

rapid n (6.88b)

B*>>2 .

. 2>>* :
Note the expected relations <;o min-comp| incoh.struct ™ 1//n, while

2\ * : ooy (s
<a0>m1'n-comp coh.struct. "~ V/Necf. remarks in Sec. 6.2, V, (iii), (iv).
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The above relation (6.86) also applies for minimum detectable signals
in the binary signal cases when agl) = a(2 =as and no or slow fading
with suitable adjustments for m* , - H(Z?)* etc., cf. Table 6.1b. We

coh coh ?
have explicitly .

Binary "Symmetrical" Signals:

< 2 (21  _ 2(1 - ) 4376E2]):5)
" nin-corp ~ L CORTR T L (6.89)
n

with reductions similar to (6.87b), (6.88), depending on Q&Zl), cf. (6.33a),
(A.6-5c¢) -

Finally, we observe in these optimum threshold cases that the only condi-
tion on the AO character of these LOBD's is the equal-variance condition:
*. yk * : * s
Xnax << X3 Ymax << Yoo cf. Fig. 6.1 and Sec. 6.4. Usually, Yiax << ¥g 18 the
stricter constraint; i.e., yg < x;. (This observation is also consistent with

our discussion of III, Sec. 6.4.)

A.  Remarks on Suboptimum Composite Threshold Detectors:

This situation is more complex than in the optimum cases above. To
obtain the minimum detectable signal when the composite threshold detection
is not optimum, we start with (6.83a), to write

2 /2 = [(A.4-"I2a)numerator+(A.4-31a)numerator]2

G L (6.90)
0-comp 2[ (A.4-9)+(A.4-29)1° = (20§_c0mp)
4%mm>]' <%mm>2
- A2 .
20o-comp
which defines 02 Specifically, for the stationary cases we have

o-comp’
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2 2
2 4) 2 2
N1 (ONE S <91@J[< S TR T
o-com 2 2, 4) N2 2 T
/2{ é%¥< > ].j<e1.@j> [(< ) A ¢ ))a 2L ¢ )]F Ef
where oo-comp//? is used in (6.2) or (6.5) to obtain performance for these

suboptimum composite cases. [See Sec. C of Appendix A.4-1 for the LF,E's.]

Now, since <p;7 = 56/? ,<< j) = aom1J ” here, Eq. (6.91) can be
written

= /B*¥ , cf. (6.11,6.11a,b). ' (6.92)

_2
To obtain the associated minimum detectable signal < >m1’n-comp (=ag)

we must solve (6.92) for z = ag, e. g.
3,2 2 2 _
z A2 + ZA]AZZ + (A] - B]BZ)Z - B*B] =0 , (6.93)

which we leave to a subsequent study. The associated processing gain here is

now defined by

2>2
*
Hcomp - B/ <ao min-comp ?

since (6.94)

N
|

%0-comp " 2<ao>m1'n-comp Hcomp
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7. QUANTITATIVE EXAMPLES: DETECTOR PERFORMANCE

In this Section we examine some specific examples, to illustrate the
general results of the preceeding sections, in particular, Section 6. Our
general aim is to provide a reasonable catalogue of common signal types,
channel conditions, reception modes, and noise models from which to select
representative applications.

We begin with a (partial) summary of the results of Sec. 5.3 preceding:

7.1 Statistical-Physical Components of the Receiyer Algorithms:

Both to implement the various optimum and suboptimum detection algo-
rithms and to evaluate and compare their performance, we need the structural
elements of signal and noise which determine how the received data are to
be processed and how these various receivers perform. Accordingly, we

note the following typical relations:

I, Common Signal Types

(i). "On-off": s§2)=/§ cos(woti~¢0)=ff cos wts ) (7.1)
(1)
S5 =0
(2) for
(ii). Orthogonal: s; = /2 cos wots 3 > coherent (7.2)
‘ reception

s$])=/§ sin wots (=2 cos(moti-ﬂ/Z)

(iii). Antipodal: s§2)= —sgl)(=—/§ cos w t;) . 17.3)

/

For incoherent reception we cannot use these RF phase distinctions, and
most simply we change the frequency:

2)

(1) _ . (2) | | |
s; = V2 cos werti 3 siT = Y2 cos wpti - (7.3a)
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II. Common Channel Conditions:

(1). Fading :
( (1). no_fading:
m ;E-= as = GglfozY ; (mij=1) (7.4a)
(ii). slow fading (one-sided):

ms a2 = o = aZ(@Ry/Tp%; (m4=1) (7.4b)

ﬁ (iii). rapid fading (one-sided):
myja2 = a2ls +aZ/a0N (1-6,)1 (7.4c)
= [a2 ;1432 (1-5, ) @D I 2"  0.4)

L (iv). rapid fading (two-siéed);
m g2 = abdyy = AT 33, = 0, U.4el

cf. (5.8), (5.8a), and where the fading effects are represented by the sta-
tistics of a [cf. (3.3) for rayleigh fading]; TN is the mean intensity of the

accompanying noise (cf. Sec. 3.2). Fading is usually the result of unre-
solvable multipath effects. [For random signal source locations we replace

A by 2 D i (7.4), cf. (3.4),(3.5).] .

(2). Doppler:

( s; = V2 Cos[(wo+wd)ti'¢oj : (7.5a)
. - (Aw,t.)2/2
{ o Si = /2 e d™i cos(woti-¢o) : Amd=wOAv/co R (7.5b)
~[awy(ts-t:)12/2
[ ey e dr T s o (t-t;)s cf.(5.13), (7.5c)
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these last two relations on the assumption that the doppler shift (wd) is
governed by a gaussian process, cf. Sec. 5.3, Eqs. (5.12) et seq. Without
doppler, (7.5) reduce directly to simpler forms, where md=0; Awd=0.

(3). Propagation Law (y):
This will depend on the mean propagation conditions, including
the relevant geometry. For instance, simple spherical spreading is repre-
sented by y=1, while cylindrical spreading (associated with "wave-guide"

modes of propagation) is usually y= 1/2. Resolvable multipath effects
give y>1: y=2 is typical of rough terrain, cities, etc.; for very rough
terrain with multiple reflections, y>2. [See Sections 3.1-3.3 above.]

ITI. Common Modes of Reception:

e distinguish: (i), coherent; (ii), incoherent; and (ii1i), "mixed"

or "composite! "Coherent" reception here implies complete knowledée of the
signal epoch (€) [or phase (woeo) in the narrow-band cases] at the receiyer,
and is usually achieved after the desired signal has been originally de-
tected, and "lock-on" in phase has been accomplished. Initial signal

detection, of course, is done incoherently, where the ignorance of signal
epoch or phase is such that (s>é = 0, with pij # 0 generally. The COmQOSTtg
mode of reception combines both coherent and incoherent processing wheneyer
s # 0, i.e., whenever there is enough phase coherence to provide a non-
vanishing mean signal. This occurs both at the intermediate stages of
detection and after the coherent mode has been established by successful
“lock-on". If one is willing to support the added complexity of the

incoherent processing after coherency has been achieved, then "composite"
processing (of‘the kind discussed in Sec. 6.5) provides improvéd performénce
over purely coherent (or incoherent) detection alone, cf. the examples (Sec. 7.5)
below. Various schema of signal processing are shown in Sec. 5 earlier.

IV. Common Noise Models:

The principle noise or interference models of practical importance
are the Class A and B noise models, described in some detail in Sec. 3.3
preceding. The former is "coherent", i.e., produces negligible transients
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in the receiver, while the latter is "impulsive", generating essentially
nothing but overlapping transient responses. Included with both these
primary nongaussian noise mechanisms is an additive gaussian component,
partially internal and partially external. The gauss noise model is itself
a limiting case of either the Class A or B sources, when the number of
independently emitting sources becomes large, or when no individual
source stands out above the general gaussian background. It is the Class
A and B models which most effectively represent real-world EMI environ-
ments and which we consider here specifically below in the application
of our general threshold theory to typical EMI examples, both for detector
design, i.e. specification of the optimum threshold algorithms, and for
the evaluation of performance, including that of suboptimum systems 1ike
the simple- and clipper-correlators of conventional practice.

In a compact way, we can summarize typical received narrow-band signal
waveforms in common use by the normalized expression

s{ ) = V2 ag(t)cosLlug yrug)ty=to1s () = (1),(2), (7.6)
where

( $5=0 ("on-off") and s§1) =0; = /2 ("orthogonal"); =n("antipodalf),

cf. Egs. (7.1)-(7.3), in the coherent cases when §if0, only.
< (7.6a)
ad(t. 1 [no doppler spread), md=0 or ud#O.]

i
-(t_iAwd)z/Z _
e (gauss doppler spread, wd=0). (7.6b)

~
]

4
1]

The effects of fading (cf. B above) are embodied in the first and second.__( )
2

. Criee = 2 2.() ()2 ¢al ()
order amplitude statistics a, ag, viz., agms 5" where mi;’ = <301 353 >/ao

In a1l the binary signal cases henceforth we shall employ the same signal
levels,'so that a£2) = ag]) = a,, [but s(2) 7 5(1), of course]. Thus, from
(7.4) we have
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mij = 1: (no fading, slow, one-sided fading) ; )
m,. =8 .+(52/;§5(1-6 ): (rapid fading); (7.7)
iJ ij ‘7o' %0 ij’ i ? )
my = Gij: (rrapid, two-sided fading). )
Also, for the signal correlation function pgj) we have various possibilities:
p( ) - §( )§( ), (coherent reception, no doppler, a,=1,u,=0); )
1.] i J . ) > % ey | ’

cos 9o ( )(t].-tJ

.): (incoherent reception, no doppler); $ (7.8)

exp{-[Awd (ti'tj)]z/Z} cos wo(ti-tj):

(doppler spread, coherent or incoherent reégpffoﬁi &d=0) /

Various combinations of (7.6)-(7.8) provide a wide range of typical receiyed
signal structures, to be used in obtaining both the algorithmic structure
(Secs. 4, 5) and performance results (Sec. 6) when specific numerical
results are desired.

7.2 Optimum Structures: v

These are described in canonical form in Sections 4, 5. Using A.- D.
above in these structural forms, along with z(xi[A),'{xi}, gives the désirgd
algorithm when combined with a suitable threshold.. Thus, zi exhibits
the basic input-output relation for the sampled data {Xi}‘

For Class A interference we have directly

d

z(inA) & 109 w](x)A+G . (7.9)
X=X

where WI(X)A+G is given by (3.13) or (3.14).
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Class B interference requires some adjustments, to account for the fact
that the parameter: @ gs cf. (3.15), normalizes the data to the measured
value of the (total) intensity, rather than to the calculated value (QZB+GG),
which is not obtainable in finite magnitude from the approximation wl(x)B+G’

(3.15). Thus writing

x = /g = Wy (aggred) - g (7.10)

weithave X now the normalized data (X) with respect to the measured inten-

sity. The pdf (3.15) becomes

A

n > S RY | B = «
(g * S 1 GHE Rrdth e ¢ 5 s1235) 0.11a)
n=

1P g o

The (macro-) parameters here are A N A] -a/2 , cf. (3.16b), and d(='3§BQ,
cf. (3.14c), where (u,y) are parameters associated with the EMI scenario,

cf. (3.6). The basic input-output relation % is now

z(xilB) z-g; log w](x)B+G (7.12)

for these Class B cases.
Figures 7.1 and 7.2 show z(x |A), 2(x |B) for typical parameter values:

TﬂéA(AAsTA) '%%B(A »%); see Sec. 7.5 for some further comments.
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Figure 7.1. The LOBD nonlinearity for Class A noise for the canonical (3.13) and
quasi-canonical (3.14) models.
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7.3 Optimum Threshold Detectors: Pefformance Elements:

Rather than attempting an exhaustive (and expensive) enumeration of
all combinations of typical signal, noise, and observational procedures
(reviewed in Sec. 7.1 above), we shall adopt the following general approach
to obtaining specific numerical results: We shall calculate various canoni-
cal relations and "basic ingredients" (e.g., L(Z), L(4), etc.), including
processing gains (per unit sample) and the appropriate (upper) "bounds" on
the magnitude of the input signal associated with both coherent and inco-
herent detection, as well as such special relations as appear necessary to
enhance the usefulness of these results. This procedure we repeat in
Section 7.4 for the two classes of suboptimum receiver discussed here, viz.,

the simple correlator and the clipper-correlator. Thus Section 7.5 is deyoted
to selected numerical illustrations of performance, including detector com-
parisons, for typical EMI and signal situations, showing how one may use

the canonical results and "basic ingredients" computed initially.

I. Various Useful Canonical Performance Relations:

Independent of the particular noise and signal structures are the prob-
ability measures of optimum threshold performance (in large sample régimes),
given in Sec. 6.1. Accordingly, we have [cf. footnote, p. 55].

a(*)
Pé*) g;% 31+e[;%g—-- 6-1(1-2aé*))]€ 5
(*)
(*) . ] i
oV o g o [ ] ) 09)

* * '
from (6.2), (6.5), (6.5e), where the quantity cén) [=(varogéa))]/2] is
determined in detail according to Sections 6.2-6.5, for both optimum and
suboptimum detectors (* = opt., (-) = sub-opt.), and where the particular
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signal and noise structures are specifically introduced. Examples of the

latter calculations are given in Sec. 7.5 ff. Figures 7.3, 7.4 show typical

curves for (pB/Z) (= PE/p) and Pé*), respectively. Binary as well as

the "on-off" signal cases are included. As expected, decreasing the false

alarm probgbi]ity (aé*)) increases the magnitude of qu) needed to obtain

a given PD . *)
. Another set of canonical relations are the probability controls, CN.P?

C(I?O.’ cf. (6.11), (6.21a), (6.27) etc., which appear in the yarious ex-

pressions for the minimum detectable signals (Sec. 6.2 et seq.). These are

() e 120l 5 ) = 20T (1-20)) (7.14)

*) B -1
.. =9 (2 F

(
CN
respectively for the Neyman-Pearson and Ideal Observers. Figures 7.5, 7.6
illustrate these quantities.

II. "Basic Ingredients":
These are the various non-linear statistics of the accompanying (non-
gaussian + gauss) noise, which are particular elements of the processing

*
gains (H( )), minimum detectable signals, 03:), etc. and bounds on the

acceptable size of the input signals (a§<<1). From (A.2-42a) we have
specifically

W, o
L(2) = <(W:—)2>0 = <22>0 = j:mzzw] (x)dx (>0); & = —g—x- log W, (x), etc.;
(7.15a)
wll 0 |
L = (igh?), =B, = [ et e o), (7.15b)
I}LZ)-24WH4 S 2 =2 (x)dx (0 - 715
= 2%, - zo—j:wzw]x)xb), (7.15¢)
wll 0
L(G) = <3W%)%>o = <(2'+22)3>0 =./im(z'+22)3w](x)dx ( E—O). (7.15d)
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A1l these quantities are positive, except the last, which for certain noise
parameters can be zero or negative. These relations (7.15) hold for Class
A, B noise, or for any noise, with pdf Wi.ps for that matter. Fiqures 7.7-
7.10 show L(z),...,L(G), (7.15a-d), respectively (in db), for strictly and
approximately canonical Class A noise,* cf. (3.13). Similarly, Figures
7.11-7.14 give L(z),...,L(G) for the Class B noise of (3.15), (7.11) aboye
(in db) for various a[=(2-u)/y], as a function of Ka.

In the Class A cases these "elements" all approach their gaussian
Timits as'AA+m, viz:

(qauss): L@y 1) g 1(22) L6 (6 g 5 (A.1-222). (7.16)

For the Class B noise, we have the results of Figures 7.11-7.14, for
example. Of course, when Ag (v Ad, cf. (3.16c))»», we have again gaussian
noise, so that (7.16) applies here equally well in the Timit. See Sec. 7.5 for

further comments on Figs. 7.3-7.14.

* Preliminary calculations show that these results are not appreciably dif-
ferent when quasi-canonical Class A noise is used, with a§<<1,>cf. (3.14)
et seq. A complete investigation of this phenomenon, however, remains to
be carried out.
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IIT. Processing Gains/per Sample:

The processing gain per sample, H(*)/n, are also needed in the evalua-
tion of (optimum) performance. From (6.10), (6.13); (6.24), (6.33) we can
write [cf. Tables 6.1a, 6.1b]:

* - (2) _ @n)*,
Teoh/n = L Teoh /M3
2 (4)
H:nC/n = %{L(4)+2L(2) (Qn—l)}, = Eg——, (Qn=]:incoh.signa1 structure)

ne -

, |
8, @ § Cons

sinusoids; Eq. (A.2-42e))

(7.17a)
(binary symmetric):

<z)2 A
n2D* L L e gy 2

1nc

@ge"-

1: incoherent structure)

2 N
v L@ e, @@ an(o),

sinusoids, Eq. (A.2-61a)
(7.17b)

explicitly for no, or slow-fading, e.g. mTJ , cf. (7.4a,b) aboye, and binary
symmetric channels, when indicated. We also note from (6 14), (6.15) that in
the coherent cases the minimum detectable signal <a2)(1n cop s increased
vis-a-vis that of the "on-off" cases; by a factor 4 for orthogonal signals
(7.3) and by a factor 2 for antipodal signals, (7.2), according to the defini-

tion (6.13), while the processing gain (H(21)*) remains unchanged. On the
coh
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_ .2 ;.2 .
mineinc = 20° (ao), (s¥mmetr1ca1
channels), cf. (6.33), and the processing gain is increased vis-a-vis the
"on-off" cases by a factor 2 to the extent that the binary signals have
coherent waveform structures, cf. (7.17b) vs. (7.17a), n>>1. Figures 7.7,

other hand, for incoherent detection, <§2>(21

7.11 show Hcoh/n (db) for Class A and B noise respectively in the coherent
cases. Figures 7.8, 7.12 show (H1nc/n) (db) + 9.0 db (= 10 10910 8),
also for Class A and B noise, when Q for the "on-off" cases. Figures

7.15, 7.16 illustrate H1nc/n for Qn = 10, Class A and Class B noise
respectively. The limiting cases (n>>1, coherent signal structure) are
readily calculated form (7.17a,b) with the help of the data of Figs. 7.7,

7.11, Generally, as the noise becomes more gaussian, these processing
gains approach their gaussian 1imits ( as expected) where now L(2)+1,
L(4)+2. (See Sec. 7.5 for comments on Figs. 7.15, 7.16.)

*2
IV. The Optimum H_ H - Varlancesk_On

These quant1t1es, 032, appear as the argument of the probabilistic
performance measures, P}, P%, cf. (7.13), and are consequently a principal
goal of our computations. Specifically, from Tables 6.7a,b we can write

in summary:

A. Coherent Detection:

»2 520 (2) 2\ .
on-coh = oM = 2<a0>min-cohnéoh’ [Eq.(6.9)],"on-off" signals
(Oéﬁlg:h)z = 25§nL(2) : orthogonal signals, [Eq. (6.15b)]

= 45§nL(2) : antipodal signals, [Eq. (6.15a)] ,

(7.18)

these last for symmetrical channels (a(]) = aéz) = ao), (p] =Py = 1/2),

and no or stationary fading small or 1arge, rapid or slow (5 =ag, a
all n (> 1).

oi ao)’
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B. Incoherent Detection:

—52
2
*2 - a0 , (4 : Lz\rz - - 2 *2 . "on- "
%n-inc - 4 ntl AZL (an!)} B 2<? o/min-inctinc’ _£HLlIﬁfZ7 192)
.19a
—52 2
2° (2)
21?2 % Mt 2(21) : 2y(21)* 12, (21)*)
%n-inc * 2 (Qn -1) - 2(<? >m1n 1nc) inc -
binary symmetrical , (7.719b)
where m1J =1, aéz)=aéz)=ao, etc., now for slow or no fading, which is more

restrictéd than the above, (7.18). Here we have

1"'2
Qn- n z 3

Coa21), .1 % 5(1)42
ij j Qn =1 = n % 1J 'IJJ > n21, (7.19¢)

cf. (6.25), (6.33), (6.33a), and Table 6.1b. Special results are

(i). incoherent signal structure: N
2 _ .27 (4) (n>1)
(o on- 1nc) - a "L /4 s

(iii). coherent (sinusoidal) signal structure: ' >: on-off” signals

—52 2 »
* 2 _ .2° 2 (2) v
(9on-inc) = 35 NL2°7 /4, [Q = 5] (n>>1)) , (7.20a)

and in the case of the binary symmetric channel above, these are [cf.
(7.17a,b) in (7.19,b)]
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().  incoherent signal .structure:

N\

(0*(21) )2 - 0: [detecti . .
on-inc) = 0: [de ection of two equal energy signals:
no distinction between H1 and Hz.]

> "binary signals"
(7.20b)

(ii). coherent (sinusoidal) signal structure:

* —>. 2 R
(g 2 02 = 208 (B2, g (B0 2 0 o)1,

The advantage of operation with coherent signal structures in the
incoherent, "on-off" mode of detection vis-a-vis incoherent signal struc-
tures is at once apparent from (7.20a): ‘

(or . ¥ (2)°

on-inc’coh st. _nL
( * 2 = L(4"‘) (>>1), (n>>1) .. (72])
%n-inc’ inch. st.

mthough 1L /L®) 50, L@ L L8 yithin 010 ab), so that for. the
customary large values of sample-size n, the advantage of being able to
employ coherent signal structures, i.e. having channels with T1ittle or no
doppler spread and/or rapid fading, is essentially ~vn, which is considerable
where n is at all large, cf. V, Section 6.2 above. With binary (symmetric)
signal operation coherent signal structure is critica], cf. (7.20b), if we
are to avoid having to distinguish between two essentially equal "energy
signals", whose original frequency structures are no longer distinct,
because of the time- and frequency "smearing" (i.e. spreading) produced in
the channel. Thus, for sufficiently "widely-spread" channels it becomes
necessary to employ the "on-off" transmission mode, cf. (7.20a), where now
at Teast, we are required to distinguish a non-vanishing (desired) signal
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however distorted, from the condition of noise alone. Quantitatively,

*
the larger the magnitudes of Qn, Q£21), the larger the variance (con)
and the better the detector performance, cf. (7.13).

C. The Composite Detector:

* * *
(o) 2 g 2 +0 2
0-comp o-coh "o-inc

—52 2
nG2l O3 16,y a2 Wl B gy (roneore
1

(7.22a)
21)* - ] 2 1Y
2 oG 16013
—2
3 (2)%,2(21)
t L (Qn -1)1 : : "binary symmetric" .
(7.22b)

Here the sum in (7.22b) reduces to (2,4), respectively for completely
coherent received orthogonal, or antipodal binary signals, cf. (7.18). The
sum in (7.22a) likewise reduces to unity. Again, we assume no or slow
fading here, and stationary noise and channel characteristics. Frequently,
we do not have full coherence at the receiver, so that Pij = <§isj>f
§1§j, (§1’j # 0), and we must use both first- and second-order statistics
of the signal, as indicated above. We shall use (7.22) in (7.13) in Sec-

tion 7.5, when we come to calculate performance.
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V. Bounds on Input Signal Size:

. The bounds-(x;,yg) on the maximum input signal for which var]g;

= varogﬁ, required both for the LOBD and AOD character of these optimal
threshold detection algorithms, are given in Section 6.3. We summarize
the results for the usual conditions (above). We start with the "on-off"
signal cases:

A. Coherent Detection:

2
xt = L(zi/?L(z’zi/é (L@ =<:2,)%2

var
[rapid fading, for no or slow fading, n - O, Eq. (6.71)].
B.  Incoherent Detection:

" ] @

ol . (6) i

incoh.sig.struct. LL—-+6L(2)L(2’2)
2
L(2)

v = ., [Egs. (6.72)]. (

coh. sig. struct. 3'..(2’2)"'2'.(2)2

For the binary symmetric channel, with no, slow or rapid, fading, we refe
to Eqs. (6.77), (6.78). Finally, when the composite detector is used
[cf. Sec. 6.5], we choose the stricter of the two bounds (xg,yg), usually
that for incoherent detection. Figures 7.17-7.19 show (7.23), (7.24) for
Class A noise, while Figures 7.20-7.22 give (xg,yg) for various Class B
cases.

7.4 Performance Elements for Suboptimum Threshold Detectors:

Just as we have established the "elements" needed to determine the
performance of optimum threshold detection systems in Sec. 7.3 above, we
can proceed to do the same here for suboptimum systems. As before, we
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Figure 7.17. The bound, xz, for coherent detection of (coherent) signals in Class A

EMI, Eq. (7.23) (No or little fading: aZ !‘582),
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Figure 7.19. The bound, yé, for. incoherent detection of signals with fully

coherent structure, in Class A EMI: (Qn = n/2, Rn =2n, n> 1,
no, slow, or rapid fading); Eq. (7.24).
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Figure 7.20. The bound, xg, for coherent detection of (coherent) signals in Class B
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seek a combination of canonical performance results with specific elements
whereby particular numerical values may be obtained, as in Section 7.5
following.

I. Canonical Suboptimum Performance Measures:
Analogous to (7.13) we can write directly from Eqs. (6.50), (6.51)
in suboptimum threshold situations [cf. footnote p. 55]..

Pb g%m@[@ Cﬁ.P.-eJ(]-Zan)]} » [Eq. (6.50)] , (7.25)
and
P, x p1-ely /B3 CE o 11, [Eq. (6.51)], (7.26)

respectively for correct signal detection, and error probability in the
subsequent "communication" phase of detection decisions. Figures 7.23 and
7.24 give the canonical relations between PD’ Pe and the degradation factor,
%, cf. Tables 6.1a,b, 6.2; (6.18), (6.38), (6.42a,b), etc. The relations
(7.25), (7.26) are canonical equivalents of (7.13).

II. Various Degradation Factors, &j:

In order to use (7.25), (7.26) in relation to specific signal, noise,
and reception conditions we need the explicit forms of the degradation factor,
@3. These are readily summarized below, from Tables 6.la,b, 6.2. We haye

A. Simple Correlators: &7, "on-off" signals:

().  coherent reception:

o = (@, [Eq. (6.18)]. : (7.27a)
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Figure 7.23a. Probability of detection versus optimum probability of detection for a
false alarm probability of 10-3 and various degradation factors @3,

Equation (7.25).
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Equation (7.25).
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(ii). incoherent reception:

% 4/L(4)(;Z;1); [Q=11; (7.27b)

incoh.struct.

2
@3 1/L(2) ; [Qn A n/2 >>1, sinusoids] .  (7.27¢c)

coh. struct.

[For intermediate values of Q, use Eq. (6.38).] For binary signals, we get

" (iii). coherent reception

¢§21): L@ | k. (6.21)7 .  (7.28a)

(iv). incoherent reception

QSZ]Y‘. = 0, [Eq. (6.42b)]: (degenerate case:
incoh. struct. indistinguishable signals) (7.28b)
* 2
QSZ]) = 1/L(2) , [QgZ]) ~v n; sinusoids. ] (7.28¢c)
coh.struct.

[Again, for intermediate values of 652]), Q§2]), use (6.42a,b).]

B. Clipper-Correlators: &%, "on-off" signals:

(i). coherent reception:

2
4W]E(O)
@J = ——ET?T—— : [E = A,B here; Table 6.2] (7.29a)
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(ii). dincoherent reception:

o4 = [2w']'E(o)]2/L(4); [Q,=11; (7.29b)
incoh.struct.
*d g (002 [Q. % n/2 >> 1, sinusoids]. (7.29¢)
=9 ) n >> |, sinusoids|. .29¢
coh. struct L(Z} ‘ n

Again, for intermediate values of Qn’ see Table 6.2. Similarly, from
Table 6.1d, 6.2 we get for binary signals

(iii). coherent reception:

*_‘4W-IE(0)2 2

o4 -I——Erﬁy—— , LE = A,B, here], cf. (7.29a) ; (7.30a)
(iv). 1incoherent reception:
@3 = 0, cf. Sec. 2.4-4 [indistinguishable signals]
incoh.struct. (7.30b)

4‘”15(0)2] 2

L@

® = [ , [Q£2]) % n > 1, sinusoids]. (7.30c)
coh.struct. L L

2

To implement the @3'5 numerically we need next x4, and w1A(0), w]B(O),
and, similarly w?A(O), w;B(O). These are, for the 4th moment of Class A

and B interference

s
X

Q A X
4A,B \,,2 BTN A (7.31)

=3
8 * Y4A,B 0A,B

A,B 3 —
QZA,B(HFA,B)j

where we may use the EMI scenario (3.6) to determine P viz.
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o - AB< > {4<G4><4Y>

From (3.11) we get directly

j} (7.32)

2 1-agY 2 2-Gy-y_ -4
= (=2 0 Y=u, =4y, :
< 4y> p,Y 4Y+u-2)(] on ) o %y X] 3 ag=A 0/ [cf. Fig. (3.1)]
- (7.33)
for this general class of scenario. With the help of (3.10) we can then
write
7,4
a <G0> (4)
7 3| A7 ¢
X'|n,8 =8 Bl —+2) . (7.38)

2 <F >C(2) )2 e

[For example, with the scenario of Sec. 7 of f Ref. _12], where a (or GO)
is rayleigh distributed, say a is, we have a = 2a <G4) <G2>2, etc.,
with y = 2, u = 0 and (7.34) reduces to

- 2c(4)
3 Ap " g > Y 49 O . (>>1)3 a§<<]’ rt<<l. ]
A C£23 (]+r|)2 A,B 4Ado A,B (7.34a)

Similarly, we get from the noise pdf's (3.13), (3.14), (7.11):

m 1 1/2
Ay AA (1+rA)

(Canonical): w]A(O)A+G = e 77 cf. (3.13) (7.35a)

m=0 m!/ﬁF(m/AA+r')
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(quasi-canonical):

-A

A .
9% 3 (Ap,) d
Wial0asg = €

X +(0 (o), cf. (3.14),(3.14a).

m=0
'J4nozm (7.35b)

For the Class B noise we have directly

S (=1D)" 2 notl
gy L T LHERD ) (7.3%)
*n'_,/Q'l; ;n—O

The second derivatives of the pdf's, W above, are found similarly
to be, for example,

(canonical):
A, o A
w?(O)A+G = -e A ' 62 1 (7.37)
m=0 m.zcm /Z—TI'. 20”2]A
" (0 — 4 ot -1 n An r(na+3)
W (0)psg = - n3/2 nZO nfl o v2 (7.38)
"B

Figures 7.25, 7.26 show wl(O)A+G (canon. )’ w1(0)B+G’ Eqs. (7.35a), (7.36),
for various ranges of parameters of these EMI models.

ITI. ARE's:

These are the Asymptotic Relative Efficiencies (ARE's) defined and
derived in Sec. 6.3, IV above. We give here only the more important,
limiting cases:
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691

TABLE 7.1 ASYMPTOTIC RELATIVE EFFICIENCIES.
2 . c .
ARE": coherent reception |ARE : incoherent reception
(@é) ["on-off" + binary] ["on-off"]
(1) s1mpggtggzgelator 1/L(2) 4/L(4)(x4-1): incoh. sig. structures
(2% -
1/L : coh.sig. struct. (n>>1)
(2) c11pg§;i;3;re]ator 4W1E(0) L(Z) L(4): incoh. sig. struct.
(2),2 . .
{4W1E(0) /L }¢ : coh. sig. struct. (n>>1)
(3) Simple correlator ]/4W1E(0)2 2/wyg (x -1): 1incoh. sig. struct.

clipper correlator

1/[4w1E(0)2] coh. sig. struct. (n>>1)




In the case of (symmetrical) binary reception (no or slow fading) in
the incoherent detection mode, (1) and (2) above are zero, and (3) is 0/0
(indeterminate). For coherent signal structures, however, these ARE's are
the same as for the "on-off" cases. We note, also, that here the (ARE)inC
= (ARE)goh, and further, that in these Timiting situations of large sample
size (incoherent reception), the (ARE), . = &3  yp> (n>>1), as well, cf. (7.27)-
(7.30) above. (For intermediate cases where Q , 0#21)>1 but are Tess than
(n/2, n) we must use the more complex formulae of Sec. 6.3, IV directly.)
Finally, Figures 7.27-7.30 show the (square of the) ARE's (=®§'s) here,
for (1) and (2) of Table 7.1, for (canonical) Class A and Class B noise. The
ARE (=/6§) for (3): [simple correlator/clipper correlator] may be obtained at
once by subtracting, viz: ARE(3)(db) = [ARE(])—(ARE)(Z)] db. In general
the clipper-correlators are much closer to optimum performance than are
the simple correlators, when, as is the case here, the EMI is Class A or
B noise. [But, regarding the use of ARE's as comparative performance

measures, see the caveat at the end of Sec. 6.3.3, IIIL.]
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Figure 7.25. The probability density function, evaluated at zero, for Class A
noise, Equation (7.35a).
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Figure 7.27. The square of the asymptotic relative efficiency,'ARE‘(@é), of the simple
correlator versus the locally optimum detector for coherent reception,
(1) of Table 7.1, for Class A noise.
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reception, (1) of Table 7.1, for Class B noise.
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Figures 7.1, 7.2 show the (zero—memory) dynamic characteristics of the
LOBD's for several specific Class A and Class B noise cases. Both Class A
and B noise require a combination of linear amplifier, and clipper-suppres-
sion (negative gain) for the larger amplitudes. The Class A character-
istics are, however, somewhat more complex, with a second amplifying-Timit-
ing region, cf. Figure 7.1 vs. 7.2. In the Class B cases the character-
istic is a clipper-suppressor which is rather insensitive to the nongauss-
ian nature (wﬂa) and to the source distribution and propagation conditions
(v o) of the noise.

Figures 7.3-7.6 are essentially self-explanatory: increasing variances
(032) lead to smaller error probabilities and larger probabilities of cor-
rect signal detection, with smaller false alarm probabilities (ag) requiring
larger 032, all of which is entirely expected. Similarly, the tighter the
controls the better the performance, as shown in Figures 7.5, 7.6.

In Figures 7.7-7.10 all these Class A nongaussian noise statistics
LAZ), L£4), etc., approach their respective limiting gaussian values as
Ay, as expected (Ij>0); i.e., L£2)+1, L£4)+2, L£2’2)+6, L£6)+8, cf. (7.16).
Moreover, when AA+0, FA+0, we also obtain the gaussian limits, as expected,
due to the nonvanishing gaussian component oé>0 (i.e., FA+w). And, of
course, the more highly nongaussian is the noise A, = e(>0) the larger is
the magnitude of the statistic in question.

The behavior of the corresponding Class B statistics (Figures 7.11-7.24)
is similar, although plotted differently. For A (mA )>~, the curves for Léz)
etc., fold back on each other, approach1ng zero db for Lé2)+1 3 db for

L(4)+°, etc., cf. (7.16). Similarly, as Aa+0 (i.e., Ag>0) wJED_QEZQ. one
~2

again has a gauss1an pdf, cf. (7.11a), which becomes w](>A<)GI=e'X /YT, as
expected, with x+X/oG%§ , (7.10). Smaller values of a re?gisent more effec-
tively nongaussian interference; i.e., larger values of LB , etc., consist-
ent with the more radical departures of the pdf form gduss1an behavior as
|x]—>oo [cf. Figure 3.4(I1) of [6], for the APD P8 (e>e )].

The processing gains (per independent sample), as shown in Figures
7.15,7.16, for signals with partially incoherent structure (Qn=]0,'n>>1)

show the same type of behavior as the various nongaussian noise moments
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Lﬁz), Léz), etc., in Figures 7.7-7.14, and for the same reasons. [For

coherent threshold reception, see Figures 7.7,7.11.]

Figures 7.17-7.22 show various bounding values for minimum detectable
signals under the equal variance condition (I), Sec. 6.4, for coherent and
incoherent reception; see also Figure 6.1 and the discussion of III, Sec. 6.4
above. In general, as the noise becomes more gaussian, these bounds become
1oos§r, and vice versa as the interference becomes more nongaussian; e.g.,
AA’ Aa, FA, a, etc. This is consistent with our general observation that the
more nongaussian the noise, the smaller, i.e., the tighter the upper bound on
the maximum minimum detectable signal <ia§:>* permitted under the AO or
equal variance condition.

Figures 7.23a-7.24 compare suboptimum performance against the corre-

min

sponding optimum performance measures, with the degradation factor, @3, as
parameter. These curves are entirely canonical in that they apply for any
nongaussian (and gaussian) noise, common mode of reception (i.e., coherent,
incoherent, or composite), cf. (6.48), and (6.84) vs. (6.90), as long as
sample size (n) is large and the A0 condition (equal-variance conditions)
is obeyed. Thus, once @3 is properly determined, specific performance
measures are at once obtained from these figures.

Figures 7.25,7.26 show typical pdf's at x=o for Class A and B noise,
needed in the calculation of the performance of clipper-correlators and
comparisons with other optimum and suboptimum threshold detection algorithms,
cf. Table 7.1 above.

Finally, Figures 7.27-7.30 show typical Asymptotic Relative Efﬁ'ciencies2
(ARE'S)% viz. @3'5, of suboptimum detectors vs. the optimum for the noise
in question and the particular mode of observation, in these threshold situ-
ations, discussed throughout this study. Characteristically, since the
simple correlator is optimum in gaussian noise, as the noise becomes more
gaussian, the ARE's for the simple correlator in both Class A and B noise
becomes larger (i.e., closer to unity), cf. Figures 7.27,7.28, including
a>2 in the latter (i.e., larger a means less nongaussian, with a fold-over
effect in Class B noise as ﬂa+m (not shown in the figures). The ARE's for

the clipper-correlator, however, display a fold-over effect as the noise
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becomes more nongaussian, until for small AA’ 0(5]0']), close to the maxi-
mum value (0 db) is attained. This maximum cannot be reached here, of
course, since the clipper-correlator is never optimum in Class A as gauss
noise, although the difference is small, viz., %—= -2 db, cf. Eq. (6.66).
A similar behavior is also noted for the clipper-correlator in Class B
noise, cf. Figure 7.30, although the range of the fold-over effect as the
noise goes from very nongaussian to gauss is much smaller, on the scale of
a 10th the amount of the corresponding Class A effect. This shows that
the super-clipper (i.e., clipper-correlator) is much less sensitive to
impulsive noise (Class B) than to the "coherent" (Class A) noise. Thus,
the clipper-correlator makes a comparatively robust processor against
Class B noise, and can be fairly close 0(4 db to 1.5 db) to the optimum
processor in performance, cf. Figure 7.30.

7.6 Numerical Examples (Threshold Detection):

In this (sub) Section, we present a few numerical examples to illustrate
the use of the general results of the preceding text. Typical Class A and
B noise parameters and scenarios are selected; our attention here is given
mainly to the on-off-cases, for comparative simplicity. Thus, we have

. = . TV = -5 - )
Class A Interference: AA = 0.35; FA 5x10 (7.39)
(canonical, [9])
Class B Interference: A, = 1.0; a = 1.2; 0 = 0.00207, (7.39b)
' ("Saipan Noise," [33])7
with the various other parameters of observation being n = 104, pB = 0.90,

Pg = 10'4, ag = 10'4, typically; symmetrical channels are also assumed:

p=gq=1/2, %}.0 = 1. Typical results follow below.

TThe value of L( in [33] is 4.5 db higher as a result of different
intensity normalization and scaling-
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I. Optimum Detection

Example 1: Performance Probabilities:

From Figures 7.3,7.4 we find at once for the values of P%, P;,
uf above that

0*2

x = 17.3 db (p* = 107%); o*° - 14.2 db
1.0 €

0
N.P. (7.40)

-4 P& = 0.9); n>>1

* =
(aF 10
These results apply directly, also, to suboptimum detectors (oz, etc.),

for values of Pe P;, etc., again, provided the sample size ig large
(n>>1) and that o = o
(7.13) remains valid).

Related to the above are the results of Figures 7.5,7.6, for vB¥ = C*,

etc. For the performance measures of our example above, we find at once that

? : the equal variance condition holds (so that Eq.

o N

\B* = Ct p =5.6db (=3.63) 3 Cf o= 7.2db (= 5.25) (7.41)

Example 2: Coherent Detection in Class A Noise:

Here we wish to establish the minimum detectable signal <a§ >:11'n-coh
associated with the above operating conditions when the Class A noise of
(7.39a) above embodies the interference. From (6.10) in (6.11a,b) we get
directly

2 —
2 = B* . = 3 2.
<?3>rﬁn—coh ) 3 (1-n = ao//ao ;0 <n<1). (7.42)
nLA (1-n)

For no or shallow fading, i.e., n ~ 0, but complete signal coherence
(E} = /Z2), the upper bound, Xnax << xgp on the permitted values of minimum
detectable signal which still preserve the A0 character of this optimum

threshold algorithm is given by (6.71)
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Xnax = X4 -15db 5 ¥£ = 10 Tog 3 10°°

max = -45 db (Fig.7.17), (7.43)

so that the upper bound here is %max = -45-15

X . <<x%*. is usually taken to be 15 db.]

max 0A (2)
Next we use (7.42), ¥ = 40 db, with La 41.5 db from Figure 7.7 and

= 11.2 db for the N.P. detector from (7.41), so that

*
¢
ofmin-coh

which is substantially below the Xmax bound (-60 db), so that the AO con-
dition is amply satisfied. Likewise, from (7.41) for the I.0. we obtain

&,

If the fading is moderately deep, e.g., n = 0.99, (1¥n) = -20 db, then

the xOA obtained from (6.71) using L(2) and L(Z’Z) from Figures 7.7 and 7.9,
Sor ¥ = -45.5-15 = -60.5

L) Za1.5 b, L(%52) < g0 gb, is x§y = 2.8 x 10 X
db. Again from (7.41) and (7.42), with (1!n) = -20 db, we obtain

-60 db. [The "<<" in

n

= 11.2 -40-41.5 = -70.3 db, (7.44a)

N.P.

= 14.4-40-41.5 = -67.1 db. (7.44b)

min-coh 1.0.

*
<<¥§>7_ = 11.2-40-41.5+20 = -50.3 db,
min-coh N.P.
and (7.44c)
<§2 - 14.4-40-41.5+20 = -47.1 db ,
m1n -coh
I.0.
which are above the‘xmaX bound,so that the estimate of <%§>*‘ may be
suspect. min

Example 3: Coherent Detection in Class B Noise:

For this example we repeat the calculations of < o>mm E‘)’h
(7.42), in the manner of Example 2, but now with the values of L

appropriate to our particular Class B case (7.39b). From F1gures 7.11 and
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7.13 we get Léz) = 25 db and Léz’z) = 56 db. For no or shallow fading

(n=0), X; = -25 db (Figure 7.20), and for moderate or deep fading
(n > 0.99), XS = -28.2 db. From (7.41) in (7.42), with n = 104, we obtain,
for no or little fading

[}
1]

11.2-40-25 = -53.8 db, (7.45a)

2
<;o min-coh

o
o/min-coh

with ¥ = -25-15 = =40 gb. With even moderately deep fading [0(20db)],

max
X = -43.2 db and a2 = -33.8 db and -30.6 db, respectively, for

max o min-coh ~
N.P. and I.0., so that even moderate fading cannot be tolerated.

N.P.

14.4-40-25 = -50.6 db, - (7.45b)

Example 4: Incoherent Detection in Class A Noise:

We parallel Example 2, for the conditions as before, but now
using (6.24) and (6.25) in (6.27), or (7.19a) with (7.20a) above in conjunc-
tion with (6.27), to write for the minimum detectable signal in Class A
noise, when threshold detection is incoherent:

2 (2)° 7
< >h1n inc 8 B*/n ] + 4 (Qn']) (7.46)

Now, from (6.58)' we have for coherent sinusoidal waveforms

(1-n)2 (rapid fading). (7.46a)

= n : .
Qn = ﬁ-(slow fading) ; Qn

NS

For incoherent signal waveforms, Qn - 1= 0. Accordingly, for the large
samples (n>>1) required for (AO0) threshold detection, (7.46) reduces to
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(i) coherent signals:

2¥* (2)
as) . . /8B¥/nL' "/,
<:o min-inc |,
and (7.47a)
*
<?§ min-inc Jgg;y"L(Z)(]'n)’ g{l-n)2>>1 ’

rapid

2 ,
since L(z) /{(4) = 0(1). (In fact, from Figures 7.7 and 7.8, L(z) = 41.5 db,

. ' 2
L{*) = 86 db, so that L(?) AW - 3w

With incoherent signal structure (Qn = 1), (6.46) reduces, for both
slow and rapid fading, to

(i) incoherent signals:

<32 i (7.47b)

o/min/inc

Specific numerical results may be obtained at once for the postulated
observation conditions above. We have [cf. (7.41)]:

<?2>* = 4.5+5.6-40-41.5 = -71.4 db, (7.48a)
o/min-inc| coh.sigqg.
slow
N.P.
<%2>f = -71.4-(1¥n) db,  and (7.48b)
%/ min-inc coh.sig.
rapid
N.P.
LY = 4.5+5.6-20-43 = -52.4 db 7.48
<§o min-inc | inc.sig. = "YU TTETTY T TYee . (7.48c)
any
N.P.

The corresponding results for the I.0. are 1.6 db greater (=7.2-5.6) from
(7.41). As expected, incoherent signal waveforms result in truly incoherent
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detection, with a v/n -dependence on sample size vs. the n-dependence
obtainable with coherent waveforms. Thus, a channel which destroys signal
coherence greatly reduces the detectability of the resultant signal
(0(20 db) here), as is well-known.

To complete our analysis, we need to establish the bound ymax<<y3.
From Figure 7.19 for coherent waveforms, and Figure 7.18 for the incoherent
waveform cases, we get respectively for yé,

Y& = -52.5 db ; yA = -54 db . (7.49)
0A coh-sig 0A inc-sig

Our results (7.48a,c) above for the coherent signals fall acceptable below

Yax = -52.5-15 = -67.5 db, as Tong as the rapid fading is not too deep,
but for the incoherent signals sample-size is not sufficiently large to
put aé}%in-inc below yg to insure the AO character of the algorithm (and

that the performance measures are themselves the required good approxima-
tions). Thus, this last result, (7.48c), really represents a suboptimum
threshold algorithm, with a suspect estimate of <%§;>m1n’ and performance.

Finally we note the "anomalous" behavior here of (optimum) coherent
versus incoherent detectign: <;§>;in-coh > <;§ ;in-inc for otherwise the
same reception conditions . For a discussion of this effect, see Section
6.4,II1 and Figure 6.1.

(2)

T We note that the "anomalies" are not due to the particular values of LA B>
but rather reside analytically in the quantities BN p oOr Bf 0.3 i.e., from
(7.42) and (7.47a),

<a2 * <a2 * = (8% - v85%)/nL ) (1-n) .

o/min-coh =~ \'ofmin-inc
From*Figures 7.5 and 7.6 we see that B* - /8B* < 0, i.e., <%§>;1n-coh <
<?§>m1n-§nc » for those PX or p} Xhere C*=/B¥ </8 = 4.5 db, i.e., when
Pg>ZX1O' , or when p5<0.62(a§=10' ). Physically, as discussed in Section
6.4, III, this "anomalous" behavior stems from the different amounts of
signal and noise information lost and gained for incoherent vis-a-vis

coherent detection.
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Example 5: "Incoherent Detection in Class B Noise:
The analytic results (7.47) apply equally well here, with now
L(2) = 25 db and L(4) = 53.5 db from Figure 7.12. From Figures 7.21,7.22

B B
we get the limits

yaB = -35.5 db (inc.sig.) yEB = -36.6 db (coh. sig.) . (7.50)

We summarize the results for the corresponding minimum detectable signals:

*
@§> = -54.9 db (coh.sig.,sTow,N.P.),
= -54.9 - (1¥n) db (coh.sig.,rapid,N.P.), (7.50a)
= -36.1 db (inc.sig.,any,N.P.),

again with the I1.0. results 1.6 db greater. With ymax<<y63’ or
Ymax = -50.5 db for coherent signal structures, the minimum detectable is

acceptably below y On the other hand, larger sample sizes are needed

max’
to make the minimum detectable signals fall within acceptable A0 1limits

when the signal waveform is incoherent.

Example 6: Composite Detection in Class A and B Noise:
From the results of Section 6.5 (6.88a,b) we may write for the
minimum detectable signal when an (optimum) composite threshold detection

is used, the following special results for coherent signal waveforms:

Z\* + V8B* - 4 (1-n) 2

<éo min-comp " <Tow - nL(z) s B*>>2(1-n)" , (7.51a)
2\* . /8B - 4

<éo>h1n-comp Jrapid - nL(sz;j;; » B*>>2, Q >1 . (7.51b)

[For incoherent signal waveforms (Héoh+0)’ the composite detector, of course,

reduces to the purely incoherent detector of (7.47a), discussed in Examples
4,5 above.]
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Comparing (7.51a,b) with (7.47a) we see that <§ hin-comp <{ QS‘" 1nc
heg;co

Moreover, it is easy to demonstrate this; for éxamp]e, let x=B*, so that
(7.57a) vs. (7.47a) becomes

always for slow or rapid fading: there is no "anomalous" behavior

Bx-4(1-n) < 7%
(7.52)

0 <X +16(1-n)%, all x>0 ,

= (1-n)?
and similarly for (7.51b).

One important feature of the composite (threshold) detector to be
noted is its insensitivity to slow fading, vis-a-vis the coherent detector,
j.e., (7.51a) vs. (7.42). A second is the possibly strong superiority over
either the coherent or incoherent detector, as expressed by smaller minimum
detectable signals, particularly when there is significant fading. This
superiority vs. the incoherent detector is 0(1.5db) and is 0 (3 db) vs. the
coherent detector with no fading, as the numerical results below indicate,
and is 0 (10-20 db) when there is moderate fading (n=0.99).

For the specific noise and signal examples assumed here we have for no

fading:

2\* 2.83 x 3.63 - 4
: . = & = -73.6 db (N.P.) , 7.53a
Class A <éo min-comp 104 x 1.41 x 104 ( ) ( )

with the corresponding result for the I.0. of -71.1 db.

Class B: <2>mm —com - 2 82 x 3.63 - 4 ;= -57db (N.P.)
P 0% % 3.16 x 10 (7.53b)

-54.7 db (I.0.)
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These figures are to be compared with (7.44a,b) and (7.45a) for the corre-
sponding coherent detector results and with (7.48a) for the corresponding
incoherent detector results.

For moderate slow fading (n=0.99), (7.51a) gives:

2\" 2.83 x 3.63 - 4(.01) '
1 A: " = = -7 .
Class <§0/m1n_comp I 71.4 db (N.P.)  (7.53¢)

with the correspording result for the I.0. of -69.8 db.

2\* 2.83 x 3.63 - 4(.01)
Class B: /é >'. = = -54.9 db (N.P.)
—— o/min-comp 4 2
= -53.3 db (I.0.)

The corresponding fading results are given by (7.44c) for the coherent
detector (Class A).

In general, the composite detector is to be recommended for its com-
parative insensitivity to slow fading. Observe that the stricter of the
two possible bounds (xg,y;) is that for incoherent detection, i.e., from
examples 2,3 and (7.49),(7.50) we have yaA = -52.5 db (coh.sig. structure)
and yaB = -36.6 db, similarly. The results (7.53a,b) are accordingly
within the Timits Yimax-A = -52.5 - 15 = -67.5 db, and Yimax-B - -36.6 - 15
= -51.6 db.

Still other numerical examples can be readily constructed along these
lines.

II.  Suboptimum Detection and Comparisons:
Here let us use the results of Section 7.4, especially (7.25)-(7.38)
and Table 7.1. We shall consider only a few examples here;, by way of

illustration.
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For the two specific Class A and B noise cases, and reception condi-
tions postulated here above, we begin by obtaining specific degradation
*
factors (@d) and ARE's from Figures 7.27-7.30 for coherent waveforms.

Class A: @g -41.5 db (Figure 7.27, simple correlator), (7.54)
9% = - 3.5 db (Figure 7.29, clipper correlator),

. * = _ i i
Class B: o3 25.0 db (Figure 7.28, simple correlator), (7.55)
q)*
d

- 1.3 db (Figure 7.30, clipper correlator).

Now, @g measures the increase required for the (input) minimum detectable
signal (n>>1) in suboptimum coherent threshold detection to obtain the
same performance as the corresponding optimum threshold detector. Thus,
we see that simple correlators are strongly degraded in Class A noise:

41.5 db in <éZ for our particular example. On the other hand, the

o/min-coh
degradation is a much less severe, though a noticeable 3.5 dbswhen the sub-
optimum clipper-correlator is used. Similar behavior is noted in our Class
B example here: 25.0 db and 1.3 db, respectively.

When incoherent reception (of coherent signals) is employed, the
degradation in <§§ in is halved (in db) cf. (6.53), viz. -20.8, -1.8 db
(Class A), and -12.5 db, -0.7 db (Class B), respectively, again for the
same performance and sample sizes.

On the other hand, the more limited ARE's, (Sec. 6.3.3), (III,

Sec. 7.4), (6.60), and Table 7.1, show that (ARE); = (ARE)Z , = o% .
(for coherent signal waveforms). For example, in the coherent cases, ARE

of clipper-correlator to optimum = %{-3.5) = -1.8 db, cf. (7.54) in Class A
noise, and is -0.7 db in our Class B noise above, cf. (7.55). In contrast,
the ARE of the simple correlator is -20.8 db, and -12.5 db, respectively,

in Class A and B interference [cf. (7.54),(7.55)]. Of course, the more
complete and revealing measures of performance are the error probabilities
(PZ’Pe) and the probabilities of correct signal detection (pB,pD) themselves,
or the associated minimum detectable signals (which are implicit functions
of these probability controls, through B* or B, cf. (7.41), or (6.11b), and

Figures 7.5, 7.6.
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Other related comparisons may be made the same way. For example,
for the same minimum detectable signal and probability control [Case III,
Sec. 6.3] we can determine how much longer data acquisition must be for
various suboptimum algorithms vis-a-vis the corresponding optimum algorithm
(i.e., how much larger sample size n is vs. n*). For our particular
example above (coherent detection) we find that:

(i.) Optimum vs. Simple-Correlator:

: - - (2)
Neoh = "con/%d = néthA,B > (7.56)
or .
n = 1.41 x 104 X n* (Class A)
coh : coh ’
and (7.56a)
_ 2
Neoh = 3.2 x 10° x nzoh (Class B) .
Likewise,
(i1.) Optimum vs. C]ipperéCorre]ator:
Neoh = 2.24 x ngoh (Class A),
and (7.56b)
Neoh = 1.35 x "th (Class B).

Again, the simple-correlator is much inferior to the corresponding optimum
processor, requiring a much larger sample (or observation time), whereas
the clipper-correlator is considerably closer to optimum, requiring only
about a factor of two (or less) increase in sample size (n). Similar
behavior is encountered in the noncoherent cases, cf. (6.56),(6.57), where
we must implement Eqs. (7.31)-(7.38) for specific numerical results.

Many other comparisons between optimum and suboptimum threshold algo-
rithms can be carried out in similar fashion based on the .analytic and
computational results in this study. We reserve such to a subsequent
investigation.
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8. SUMMARY OF RESULTS AND CONCLUDING REMARKS:

Here we briefly summarize the principal general results of this study,
reminding the reader that the detailed quantitative, analytic results are
developed principally in Sections 2 through 7, and in the various Appendices
following, as a review of the Table of Contents reveals.

Sections 2 through 4 are mainly an overview of recent earlier work,
needed for the subsequent developments of Sections 6 and 7, containing
some new material on suboptimum detection algorithms. Section 5 focuses
on the structural form of the various optimum threshold detectors, which,
like the analytic theory herein described, is canonical; i.e., independent
of specific signals and noise. The principal result here is the observa-
tion that these threshold algorithms require a double matching process--the
earlier, and more familiar linear matched filter for the signal, against a
nonlinear transformation of the input noise (and possibly weak signal)--and
an initial matching of the receiver to the noise itself: namely, the above-
mentioned nonlinear transformation of the (sampled) input data'§; The

specifics of this transformation dynamics depends, of course, on the pdf of the

noise. The overall character of the receiver is adaptive--to the noise,
and to the desired signal, as we note more fully below in (11).

Sections 6 and 7, along with the appendices, contain the bulk of the
many new results, in particular for incoherent and composite detection.
Let us now briefly list the principal general results:

(1)  The optimum coherent threshold detector is superior (in the sense
of smaller minimum detectable signal, etc.) to the corresponding incoherent
detector when the signal waveform is incoherent, as often happens, for
instance, when there is a doppler spreading produced in the channel. On the
other hand, for coherent signal waveforms, these coherent and incoherent
detectors are essentially comparable in threshold detection [cf. Section 6.4,
III; Examples 2-5, Section 7.6].

(2)  Threshold optimum systems are superior to (threshold) suboptimum
systems, as expected. The former can be very much better 0(20 db or more)
than conventional detectors, optimized against gaussian system noise; e.g.,
simple correlation detectors. They are less dramatically superior 0(2-6 db
or so) to clipper-correlation detectors (which employ hard limiters). The
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degree of superiority is also greater for Class A noise than it is for the
"impulsive" Class B interference (cf. Section 7.6). These results support
the use of simple, approximate detector structures, like the clipper-corre-
lation detector, vis-a-vis the exact characteristics (cf. Figures 7.1,7.2a,b)
in many instances, because of the much greater complexity of the latter.

(3) We remark that the optimum threshold detectors themselves become
suboptimum for input signal levels above some limiting value, where the
condition for asymptotic optimality (AO), namely, (approximately) equal
variances of the test statistic under Ho and H], is no longer satisfied.

It is then not guaranteed that they will remain superior to the aforemen-
tioned (or any other) suboptimum detector. However, performance, on an
absolute basis, improves for both as the input signal level rises. This
means, of course, that even if the A0 condition no longer holds, we can
still adequately use the originally optimum threshold algorithm.

(4) For these threshold detectors to maintain their optimality for
the large data sample sizes (n>>1) needed to achieve adequately small
decision error probabilities for the very small input signals which are en-

countered, it is critical that the algorithm include the proper bias term, é;.
This bias is obtained by terminating (under HO) the basic expansion of the
generally optimum 1ikelihood ratio about the null signal (6=0), cf. Section 2.
This bias is solely a function of rms input signal level (ag), sample size
(n), the basic noise statistics and second-order signal statisti«s In fact,
it is shown that 6; is - %varogﬁ = —]2— [<g’r§2> g}H = -7 03 , cf.
Appendix, Section A.3-6. Without this proper bias term® (Tacking in most
analyses of the threshold detection problem [48], performance can be far
from optimum [cf. end of Section 6.3].

(5) For best operation, the composite detector is proposed: this is

the sum of the coherent and (purely) incoherent algorithms [cf. Section 6.5].
When it is possible to take advantage of the coherent mode as well as the
incoherent one, the result is an improvement in performance 0(2 db or more)
over incoherent reception, and markedly so 0(10 db+, n=0.9+) against fading

to which (slow or rapid) the coherent detection is particularly vulnerable,
as is the incoherent detector to rapid fading, cf. Example 6, Section 7.6.
These observations apply generally to both the optimum and suboptimum
threshold detectors.

191



(6) A very important feature of the analysis generally is its
canonical character: this is true equally of the statistical-physical
noise models employed and of the (optimum) threshold forms of detection

algorithm. The formal structure of both algorithm and performance measure
is independent of specific physical models. This gives the threshold
theory its very considerable breadth: it is possible to indicate the basic
functional elements of the algorithms' operations without having to choose
a specific physical, numerical example.

(7) Another important feature of the present approach is its
definition and use of the concepts of minimum detectable signal and

processing gain [cf. Section 6.2 et seq.]. These, in turn, require a

nonvanishing input signal, which is certainly the case practically. The

A0 condition [cf. (3)] is really a condition of small but nonzero input
signals, sometimes referred to as "vanishingly small": we call it here
“practically small"; i.e., small enough that the AO condition is practically

approximated; e.g., Xmax’ymax = Xg,yg - 15 db, say, so that
- 2 _ 2 , 2 ”
of" = a§", where o = o*" + F(n,6) and .". [F(n,e)|<<(og)_ or |F, |/ox<<1

cf. Sections 6.2, 6.4. The minimum detectable signal and processing gain
permit a variety of useful system comparisons, both between optimum detectors
in different modes of operation and between optimum and suboptimum receivers.
(8) The concept of Asymptotic Relative Efficiency (ARE), cf. Section
6.3, IV, though useful here, is not a complete nor necessarily reliable measure
of system comparisons. A more effective measure is the degradation factor,
®4_coh® %h-inc® €tc., which specifies the increase needed in the minimum
detectable signal of suboptimum (threshold) detectors to achieve the same
performance as the corresponding optimum detector [cf. Section 7.6, II, also].
Since the minimum detectable signal is an implicit function of the performance
probabilities, as well as sample size, noise statistics, etc., it is itself
a "complete" performance measure also, while the ARE is not. Error proba-
bilities (and/or probabilities of correct signal detection) are Tikewise the
corresponding "complete" measures of performance, vis-a-vis signal-to-noise

ratio, and the ARE, which is of the same level of statistical incompleteness.
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(9) The r6le of discrete vis-a-vis continuous sampling is also
examined here, in sufficient detail to explain the often "anomalous"
behavior of incoherent threshold detectors (for the same @2 or p} and
sample size, n), giving smaller minimum detectable signals than the corre-
sponding coherent threshold detectors, under disckete sampling, cf. Section
6.4, III. Although these effects are noticeable, they are small 0(1-3 db).

(10)  Another canonically important feature of the threshold theory
is that it provides both structural and performance limits in the optimum
cases. Such Timits are critical if one is to decide what practical
(usually rather suboptimum) systems are to be employed, within the available
economy. Often the sacrifice of a few db in <§§>inc is more than compen-
sated for by the resulting simplicity and comparative inexpensiveness of the
realization of the algorithms.

(11)  In the larger sense, as well as in the particular, these
threshold detection algorithms represent adaptive systems: the often very

considerable superiority of the optimum algorithms over their various
corresponding suboptimum alternatives stems from the fact that the former

are basically adaptive. The principal area of adaptivity is the noise. 1In
practice this takes the form of establishing (i), the class of noise--Class

A vs. Class B, for example; and (ii), the three (or more) statistical-physical
parameters of the particular noise environment of the class in question. Of
course, in practice only estimates based on finite samples are possible, so
that it is also important to determine how sensitive both the algorithms

and their performance are to departures from the actual (infinite-sample)
values of the parameters. This involves a robustness study. Preliminary
analysis [42],[45] indicates a reasonable lack of sensitivity to small and
moderate changes in parameter estimates. A second area of adaptivity lies

in the signal domain: estimation of various signal parameters (amplitude,
waveform, frequency, etc.) which may only be known statistically at the
receiver, or even estimation of such statistics themselves. Some preliminary
work employing locally optimum Bayes estimators (LOBE's), which are also A0,

is now available [51].
A concise (and incomplete) overview of the material of this report is
given in [49]; a much more comprehensive, invited review paper is scheduled [50].
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Many further topics need to be studied in the context of the present approach:
for example, along the lines of using appropriate estimator-correlators to
simplify the realizations of these A0 LOBD's, [52], including the proper
biases (4) above; and the effects of weakly-dependent noise samples,

cf. [53], but along the present lines of "parametric" models, rather than
non-parametric ones, [21]-[24]. A parallel derivation for A0 LOBE's of
specific signal elements, extending the work of [51] in detail, is also needed.
Finally (but not necessarily only), is further work along the lines of [54],
specifically addressed to multiple-element arrays and beam-forming in
nongaussian noise fields. Still other, associated threshold reception
problems will suggest themselves in the course of the above, among them

the further development of analytical and numerical results for the binary
signal cases, which are initiated here.
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GLOSSARY OF PRINCIPAL SYMBOLS

ARE Asymptotic Relative Efficiency

AA,B overlap indexes

Aa Class B parameter

A, (peak) signal amplitude

a fading amplitude

<?2>r <52 minimum detectable signals
o/min® \'o/min

Ao, 3ps a normalized signal amplitudes
0, 0% (conditional) probability of false alarm; a, also, a
Class B noise parameter, cf. (3.14c§
o, xo/x] = ratio of radii
*
p(*) probability control = (C,C*)2
Bn,B;,Bﬁ biases
b]a Class B noise parameter
B, B* (conditional) probability of false signal detection
C binomial coefficient
mn
c,C* probability controls
€ signal epoch
F (x|0) pdf of (signal and) noise
N
F. detector characteristic
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GB Class B noise parameter

Gy (6) beam pattern

9(5),9*, detection algorithms

Y propagation law (exponent)

r' ratio of intensities of gauss to non-gauss components
H]’HO’H]Z’HZI hypothesis states

hM’ weighting function of matched filter

Ios source signal intensity

TN average noise intensity

ks X thresholds

L(z),L(4),L(]’2)L(6) (1st-order) statistics of the noise

A likelihood ratio
(*) - .
]n likelihood ratio
li’gj transfer characteristic, cf. (4.2a)
A distance
AO,A] boundaries of source domain
mij second-moment function of signal amplitudes
u=p/q ratio of a priori problems; also, power law

of source distribution, cf. Eq. (3.5).

n,n, 2,n* number of (independent,time) samples
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intensity of nongaussian component (Class A,B) noise

doppler "source"

doppler shift

probability of correct signal detection
error probabilities

processing gains

a priori probability

degradation factor

mean noise intensity

phases

signal structure factors

a priori probability

normalizing distance
second-moment function of signals

function of signals at (ti’tj)

jJauss intensity
variances
"sign of"

normalized signal waveforms

data interval
error function
signal-to-noise ratio

normal signal waveform parameter
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pdf of noise

pdf of noise
normalized data sample
coherent bound

incoherent bound
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APPENDICES

Part I Optimal Threshold Detectors

(David Middleton)

APPENDIX A-1

Optimum Threshold Structure and Bias Terms: The "On-Off" Cases:

Here we develop the general LOBD structure, including dependent samples,
leading to Eq.(2.9) and its various coherent and incoherent special forms
(2.11), (2.12). We focus our attention initially on the "on-off" (H1 ys.

Ho) cases, as the extension to the binary signal situation (H2 vs. H1)
follows immediately from these results, cf. (2.13):et seq. We:consider
only the general, and usual,case of additive signals and noise, cf. Sec.
A.3-4) ff. however, so that

A (x10) = ule (x-8) /W (X)y 5w = p/as x = [x;1 = [/ ] (A.1-1)
is the Tikelihood ratio to be expanded according to the threshold concept
described in Sec. 2.2.

Al-1: The General LOBD: ,
We begin by expanding the numerator in appropriate powers of
8 = [a :s.], cf. (2.9a), through 0(94), to obtain

0J7J
o) o z (2309 4= o
- 0. 0.0,
t <\1 W 0X, 2' i’ w, axiaxj
3 : 4
W, n W
1 + ] 1 n
9.6.0 - 0:0:6,0 )— — ...
1Jk<1 J k> 3X; ax axk 4!ijESL<‘ J’k 9“>wn‘ 39X -+ X ’

205



where

i
MWW
=9 n_n 3
Y: ==—logw, = ——=—
! 8x1 N W axi Y
2 ij 2 id
w zxng = :n = :x]:i “n wn:n = 2ty s (A.1-2a)
1- J 'i j wn J J
i.e P
3 ijk
%y = aizax log W, with %"ai :2 Xy w3 > etc.,
S R n %{%5% Wy
e.g.
J
whn w;ﬁ ..M ( )
- , etc. A.1-2b
TP W

Our next step is to expand 1og A > using (A.1-2) and the relation

Tog(1+x)= x - (x2/2) +(x3/3) -(x*/8). 3 |x]<1:
log A= log u + log [1- AE}; %T‘A§fg) -%— % 3 ) 4| A%ggkg)"’] (A.1-3a)
= Tog  + [-AU)+ ] T a2 ] 37 A Gl A(4) ] oeh)
M2, 1_,@5% a2y @), .
A A Cm T — A “ly .. ,
[ 212 : 3hUAT Jéo@“l
3 o, (1)2,(2)
1 13, 3l
+ 3 [-é-/-\( ) + I + %0(64)
RO
7 A '"]io(e“) (A.1-3b)
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2 (1)°
o 109 An = ]OQ H - A(])+ lzT[A(Z)"A(]) ]_ %_'_[A(3)_ %i_A(-I)A(Z).*- 3!2 ]

2 2 4
SEACH %A(Z) _ AL A3, 4L ()% (@) A,

(A.1-3c)
which becomes, more compactly
e 1ogA 1ogu-z<e)y + 5T E{(ee>(yy+z )<0><G>YYJ
5
+05 + 0, + 0(<e » (A.1-4)
where now, specifically
;N 'le
03 = - 37 g 1(e;0 ek) - 3<61.><6j9k>y1. (3%t 25)
+2yiyjyk<ei><ej><ek>} (A.1-4a)
'IJkQ, :
_ 1 y
% =77 ijke {<61 j 000 W W 3<e,1.ej> <eke£>(zijwf¥§)(Zkz+ykyz)
sz
_4<e1.)y1.<e 2) +12<e NE >yiyj<ek62>(zk2+yky2)
-5<ei> <ej> <ek)@z>y1.yjykyz} . (A.1-4b)

For coherent reception, as explainedin Sec. 2.2 aboye, we retain only- those
terms in (A) which are 0((6}) and replace terms 0(<ez>) by the resulting
average (of 3\(}) over H , e.g. the LOBD here is now
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%oh = [Tog u + 57 2 (o0 ><&1yj+zij>Ho i <91><ej><yiyj>ﬂo}]-§<ei>yi
or (A.1-5a)
= [log u + 57 Z {<y [o;050- (o) e >Jy> +<e : >< 1J>H 1- X(ﬁ DYi s
(A.1-5b)
where the expressions in the square brackets arenow the bias term,an_C.

Similarly, for purely incoherent reception, we require (e )
and <e1eJek§ 0, at Teast,* for the LOBD, so that o5 = 0, and the LOBD
now becomes

: n (13kz) )
g?nc = [log u + ar 'ijgf, <6 i9k0y > -3[%<eiej>(‘yi‘yj+zij)] >HOJ

10 | ~
where the terms independent of the data Qﬁ) constitute the bias, B* .

n-inc’
here.

To summarize, then, we have the LOBD's for coherent and incoherent
detection, respectively

: 4
B | (Y = 9t - Dy (17

with

B:-c= log ut ;"<y [.Pe'<9> <§>]X+<§39)>H0’ o E(«?:é:) = <.01.6j>, (A.1-7a)

This second condition, (e ) ek} =0, is certainly satisfied for narrowband signals,
S5 =2 2 cos[u, (t;-€)-¢; 1, whenthe first condition <b =0 holds. For broad-band
s1gnals, however we require that <?Jek92 =0, as well as <91> =0, for this
so-called "purely" incoherent reception.
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and

- 1 '
9fnc = Bh-inc * ?T{X.Se% “C§?2>] ’ (A.1-8)
where
: w(ijkz)
= L n
BX inc = 109 1 + 7y <i§kz<eiejekez) i

-3[9% <eiej>(Yiyj+ij)}f>HQ ’ (A.1-8a)

which are the results exhibited in Sec. 2.2 above. Here we have explicitly .

5 32109 wo
Y= [yil—g)-(—idog Wp s ZF [Zl'J'J= [———axiaxj 1
4
(ijke) _ % ¥n
W = . (A..I—g)
n 3X; 9% 53Xy X

The results above hold for dependent or uncorrelated samples, €.g.

n
wn(j\)(i)T;FW(xi ),
generally.

A.1-2: Independent Sanp1ing:

When the noise samples are independent(but not necessarily stationary)-
the limiting situation.of ourrpresent arnadysis- wery considerdble simplifications
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in our general results (A.1-7), (A.1-8) above are possible. Now we have
n .
Wy (XD = Wy (x[H)) = jT] wy (x5 [H) (A.1-10)
j=
so that
N
3 : 3 log W,
y. = — log w -> = 2 3
i X 3x; i
% 32
- - —— = !
%3 = wpaxy 109 (i) = Doglogwilegs = 4345 5
| ?
w? 2 w 2 5
‘ (ﬂ). "2 log ‘”h+( ) = 2045 3
1 %
w§ij)
J = = + . 1=
Wi Y .YJ Zi5 = 4 JLJ 2161\] ) (A.1-11)
Accordingly, the LOBD's (A.1-7), (A.1-8) become now
n 1 N
= R* . . = —_— -
Bn-c ; 21"<'e1'> i g?nc Bﬁ-inc 2! Z [2 25 +2161J (e » (A.1-12)
cf. (4.1), (4.2), (4.4).
Our next task here is to obtain the biases (A.1-7a), (A.1-8a), for
these independent samples. We begin with the coherent case (A.1-7a) and
observe that
- 2
Z 2350 Pn, 7 ] a”(y )H ) aw<y H (yJ>H : (A.1-13a)
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since X{ X5 (i#j) are independent, so that

PENECEDS -ZanQ>H

1J

2 >H f 9% =f W1i9%q = W4

(regardless of whether or not w, is symmetricall!). This last follows from
the necessary condition on the proper pdf wy; that w](f?)i = 0 always.

.00

-0, (A.1-13b)

-0

Similarly, we have

A D R A CEPTIR G aaw e,

iJ

2<92>f°°[-—- (—- ]w]dx)

o

2( 2 °°“ ]
g > C—— w1dx)i ; J[mw]dxi = w1v_m =0, (A.1-14)
since wi(iy) = 0, also, for a proper pdf. Writing*

(2) . 2 _ /.2 _

L ( ) w]1dx (zi)Ho - <y1>HO , (A.1-15)

. _ 2 _ 7,2 2 = /22N
and observing that a,; = pelii'<ei> = (ei>-<§i) y by = <ei> in the above,
we find that the bias (A.1-7a) becomes

*
Incidentally, note that L§2) is equivalent to Fisher's Information
I., at 6=0, cf. Eq. (225),[12], i.e.,

ily_g 36 6=0
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B:l-coh (A.1-16)

n-coh °

n
= log n - %-g <91>ZL$2) log u + B*

When the noise process {x} is sta’cwnarfx__w]1 = Wy all i and .- vi =0,

(2) (2), all i1, etc., further considerable simplification occurs. We
obta1n for the coherent LOBD, g% ., from (A.1-7), (A.1-16), 2y = “i(xi)**(xi)
and

- (2) 1 2
e 9%oh [log u -1 z <éo1 1> 1- X <ao1 1)2(X (A.1-17)

Our next task is to evaluate the bias, (A.1-8a), for incoherent de-
tection, now with independent sampling. Let us consider the first term
of (A.1-8a), viz.

y (13ke)

Z e1eJek 2}-——~————£>H :

ijke o

1. (ifj#k#e):

W (13ke) W) w(j) WK (8) |
“ <_Dw_'-—>H =<w: : w'l; ’ 1 ’ w: >H0 = <21'> 0<“j)o<£k>oé‘ﬂ>o

i Y5 Wik

n 0
cf. (A.1-13b) ; (A.1-18a)
II.  i=j(#k#e):
(ijke) (ii) (k) (&) "
W, /M Witlowg /M )
< W >Ho - < Wi Wy W >Ho B <(w] )>Ho<y”k>oé'z>o
cf. (a.1-13b) (A.1-18b)
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There are CN (E-1) combinations of the above, where N = no. of indexes
(= 4 here) and E no. of indexes that are equal, i.e. k=j, .2 E = 2, so that
4C4_] = 4C3 = 4 combinations of the above. (For I, E = 1 (identity),

=1

Se 4C4_0 . )

II1. i=j; k=k (i#k):

< > <W1:1)

(1sz (kk)

w”<> Q )><_)\) (e 13*31%@ %% % =0

cf. (A.1-11), (A.1-14). (A.1-18c)

o

Similarly, we have

IV, i=3=k(#):

(ijke) (iii) (l (%
S ) 0 e - ) 00”0

0

(A.1-18d)
V. (i=j=k=2):

(1jke) (4) “ (4) @ |-
= 0, si dx) = wp; = 0. A.1-18
< <( ) ; since (f Wy X)i W13 , ( e)

Accordingly, the first term of (A.1-8a), (apart from log u) vanishes.
The second term, however, has a definite, nonzero contribution. We
distinguish the following combinations of terms, on expanding:
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(") (a3 (")
1 /ey M, () 2y Mk, (kgt)
- §<[1Z<e1.> w—]—1— + 1’§j (eiej)zizj][g<ek) Wl_l:_ + kzz' {eke’) “kzm]>H0:

W14

W) o
"Ik ;L (df'(fiq wy dx

) = L o), - <(“%51j+“§)2)no’

(3).  (i#j)#(kee):

(44258 %y = 4500 €

(4). (i#d)s (k#a):

(a).

(b).( i=k; j=2
(k#e) .
{ }(1‘#3‘)

i=25 j=k

(J#z)} (#3252 = 0
<2222> <22> <i2> - L(2 (2)

(22gk> - <£2> <£§> - L(2) (2)

cf. (A.1-18c);

>o&k)o(’%)o

(A.1-19)

(A.1-19a)

(A.1-19b)

(A.1-19¢c)

(A.1-19d)

(A.19c5

Combining (A.1-19a-e) we get for (A.1-19), and in fact, for the entire bias

term, finally,
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B*

n - 2 2 2
n-inc - 109 ¥ - %'{§ L§4)<6§>2'2L§2) <e$>2+21% L§2)L§ )<eiej> }

*
log u Bn -inc ,

(A.1-20a)

and when the noise process is stationary, e.g. L§4) = L(4), L§2)= L(z),
etc. the simpler result

2
ol B =Tlogu- <e1eJ>2{(L(4) 2 (2)° )s, +2L( )? y=log B .

(A.1-20b)

Accordingly, in the stationary cases the incoherent LOBD (A.1-8) now
becomes explicitly

1 2.0 (4) (202, L (2)
s = [log u-gizj<am.aojs1.sj} (L2t e, sraltel 1]

(A.1-21)

1
tor % 2 25 21613 <?01 0j%i J

L4

_d |
;= 2(x5) = % 109 w](XIHO)1x=Xi , etc.,

where the term [ ](= B; _inc

cf. (A.1-15), (A.1-19b).

) is the bias and L(z) =<22>0; L(4)= ((2'+22)2> ,

A.1-3: Gauss Noise and Independent Sampling:

Our results (A.1-17), (A.1-21) for g* should reduce to the previously
obtained fonms when the noise is gaussian. Here we have (for independent
noise samples) |
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2) _ [~ 212 2 (8) 72 102 7.2
L =f £ ax= 5L =f (x°-1) %W (x) dx=x"-2x°+1=3-2+1=27.,
-e 2w - (A.1-22)

Additional quantities needed later (cf. Appendixes 2, 4) are (for the
gauss pdf (A.1-22))

gauss

.
L(2:2) < a0y

® 4 _oF _ o2 1.
Zj:wxw](x)dx—ZX ‘gauss' 6x“ =6, (x“=1);

6) _ /M\3 _ /.2.\3\ _ B F.Z _ .
L\®) = <(w]) Yo = (LE-1%) = xO-athada1| o =15-3.3¢3-1=8.

¥ (A.1-22a)
Consequently, we have
L(#)_p (2)° = 2-2.12 = 0 (A.1-23)
gauss ’ :
so that (A.1-17) and (A.1-21) reduce now to
[ g 6§] E ( )
g* = [log u- ) 5] + ) B.%x; 3 0; = a_:S. ; A.1-24
coh'gauss 3 2 i i i 0177
19,20 11 2,1 10
g* = [log u- % ) 65)- 7 7 (0,6 )°T+ o 2{e.e.>x.x. .| (A.1-25)
inc gauss 2 3 1> 41j < i J> 21! {3 17377177
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These results demonstrate that the LOBD's for coherent and inconerent re-
ception in gauss noise are, respectively, the cross-correlator % éixi’ and
the autocorrelator, éi(eiej)xixj, specifically here for independent noise
samples. (With corréiated noise samples the corresponding stfuctures are
given in Sec. 2.3 above.) These results also agree precisely with the
earlier developnents (20.72), (20.81) or (20.11) of [12], when ky'=s.
therein (independent noise samples). Note that these results apply for
non-stationary as well as stationary noise processes: provided w1(x.) is
normalized to the mean intensity of the ith sample, so tﬁat-L(z), Lz4) are
then invariant of i. If a fixed normalization (over the observation
period) is used, then Wy > Wiy and we must explicitly account for the
scale of the iEh sample. In the following analysis we shall, in the
nonstationary cases, generally assume that the latter convention is chosen,
so that the L(z), etc., must be indexed, e.g., ng), etc., as distinct

from the stationary cases.
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APPENDIX A-2

Means and Variances of the Optimum Threshold Dectection Algorithm:

Here we calculate the first and second moments of the LOBD's gcoh’
g?nc’ in order to obtain the desired performance measures (P¥* D> Pg), as
described generally in Section 2.4, for these threshold detection régimes.
Again, independent noise samples are postulated, cf. Sec. A.1-2. We
begin with the "on-off" cases (H] VS. Ho) in the coherent detection mode.

A.2-1: Coherent Detection
Let us consider the H,-average, < >],e of g% s (A.1-17), for in-
dependent samples, viz:

[e<]

<L°’(X) .TT]"ﬁ(X -8 )Ngcoh(x)%>

i=

e)(f 2.(x3 Jwy (x;-0, )dx> . (A.2-1)

n

<9?:‘oh -

IlM:

* -
Bnc

Expanding Wy about 6., we see that now for symmetrical pdf's, Wy,

i
<f zw]dx>
-0 81

(<er W [wy-6w! +.%E w(")--%— $"‘)+"‘]d%>6)i (A.2-2a)

o 3y e (1)
0-(61) ([m(_‘x_l)zw]dx)im- g—ﬁ-(im r"—ﬂl:]——- x)i + 0((6?)),
(A.2-2b)

ne
since if Wy is symmetric (about x=0), wi, w%‘ l etc. are anti-symmetric,

while w% ), w§4), etc. remain symmetric. We have for (A.2-1), accordingly
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3
n (03) (6>
(ko0 = Bect 11D AL g oy
2 lBx + ? (09 2 (Phoe% (A.2-3)
where
(1,3) = W 1(M)
LY 7 = — ¢ —— W,d 0), et
,[;,w] W, dx (# 0), etc.

The H,-average, < >o 6=0° of (A.1-17 follows at once from (A.2-2a) on
setting 6=0 therein (before <f)%), e.g.

(o2 oo = Bric , (alle). (A.2-4)

We proceed in the same fashion for the second moment:

(istan®n,0 = Bile - B ] Ceaalxg)+ ifj<ei><ej>zi"i>l,e' (r.2-5)

Equation (A.2-2) gives us (z)] o+ FoOr <hi£j>1 o We have

i=j

o <fm ' ) Twy-owi+ 9y ‘”1" ' ]dx> '

© \ 1 wu
L(z <1> (2 2) +0(<64> I_]§2,2) - Lm(%)z(ﬁ)w1dx)";

(A.2-6)
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(i#d):
e3

3
, 0.
<’°i"j>1,e = <<z1.>]<zj>]> <( e1L(2) §1|_ |_1§1,3) (- 0 |_(2) '3TLJ(] ,3) ')>e

(A.2-7a)
fo (0407, = €850 )L(z) (2 —(e1eJ>L(‘ ,2) (2) 1 <616J>L(1 30 (2,
(i#3) . (A.2-7b)
The result for the tast term of (A.2-5) is
2 (2), &8 (2.2)
_i§<61'><ej><2'19'j>],9 = 2 @Q [LiT —— L%
' 2), (2
*—i% (ei>(§j>[(eiej>L§ )L§ e 1. (A.2-8)

Since we ultimately want the variance, vary egé, rather than the
second moment alone, we can write

vary gt = 9*2>1 <9c>1 6 = 2(‘31)(6 L2501 ,07 (4 M,6031,01>

(A.2-9)

a simpler result, independent of the bias B;_c, as expected. Since from
(A.2-2b)

3
<ki>1,e <9 >L(2) < > L(] 3., (A.2-10)

we obtain from (A.2-8), (A.2-10), in (A.2-9)
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2 _ 2. (2) <e$> (2,2) (2)2, \ 2
(o) = vary gg¢ = 2O (LT A7 e (o Ten)

L e e D),
J (A.2-11a)

In a similar way we obtain

* = *2 * 2 ¢ ‘
Varo,ogc B <gc >o,o'<gc 0,0 1.23. <e1'><ej>[<21'zj>o,o'<“i'>o,oéj>o,o:|'

. (A.2-12)
From (A.2-2) <£i>o o = 0and
A - (2) . = = ‘g ’ -

(i%5%,0 = @500 = L 8;5 3 ° 20250 = 05 i85 ((A.2-13)

so that

(c*)2 = var_ g% = g <é )ZL(Z) = -2B* cf. (A.1-16)

of 7 ™o,0% & \i/ T n-c> -\ ’ (A.2-14)

exactly.

From a comparison of (A.2-11) and (A.2-14) we see at once that because
of the consistency condition on the threshold expansion by which the bias
is determined [cf. Sec. (2.4)], which also requires that ofz = 032, we have
specifically the requirement on input signal level <8}, or (Q}z, that
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o*2 2 g%l .
1c oc °

2012 L§2’2) 2 (2)2
| ; L) = - Ly

¢ 1O EHIT o -op e <<og” < 16

(A.2-15a)
This reduces in the stationary regimes [where now <pi) =3, 5; =3, »
since becCause of coherence Si = Spax” V2, etc.] to
2 n 2
1c oc
— 2)
2, (2,2), (2)_52, (2),,L B 2 )
I{ao L JE R WS L ;j (aoiaoj' ao)! << 1 (A.2-15b)

and clearly there is a dependence on sample size (n). For slow and rapid
fading (A.2-15b) reduces further to

(i). slow fading and no fading:

| ;E'L(Z’Z)/ZL(Z)QEEL(2)|<< 1 (A.2-15¢)

(ii). rapid fading:

[{;E-L(Z’z)/ZL(Z)-'EgL(Z)}|<<1 ; (A.2-15d)

222



(ii1). no_fading:

— 2
a2 (220 (2% (@) oy, (A.2-15¢)

cf. (A.2-17a) ff.
In the strictly coherent reg1mes (no fading), we have <e
(o (e ) here. Moreover

0 w 2 © 2w w
L(2,2) =f (—1-) widx = f i ] ) wydx
o W ]
® W1 4
= 2f dx = 2(2}0 , (A.2-16a)
L(2:2) ()2 2Ny, 2 . (2) . ;.2
S L =——2—-——-<z >0=varoz ;LY = (05 = var .
(A.2-16b)
Accordingly, the condition on (61.}, (A.2-15a), becomes
SN 2,0 \2
12 <ei) varozi/ 12 <e1.> var L, << 1. s (A.2-17)

2

o*”,

*
for o 5 2L (2) L
When stationarity obtains, in addition, Li =L\, etc., <e1'> =a.s,
all i, so that (A.2-17) reduces further to

2
var_%
a2 52 ¢

o vs;;zf') << 1 s s S>0, ‘ (A.2-17a)

[<3]
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which is independent of sample size (n), as is (A.2-17) essentially, if
%5 does not vary too much (i=1,...n).

A.2-2: Incoherent Detection:

Here we seek the mean and variance of g:nc’ (A.1-21), when (A.1-20a)

is the general bias in the non-stationary cases. We proceed as in Sec.

A.2-1 and consider first the H]-average of g?nc.

<g’1?nc>1,6 = Bi-inc 2 z <e]e‘]>éz Ly*e4 61J>1,e (A.2-18)

Specifically, we have (cf. A.1-11):

+z1>] . <;[ ) w](x -85 ) dx > 0, (A.2-19a)

oW 2 3
/M L 8 =07 (™) >

|| (4)
G = W 01/
0-0+——-—(_ -0+< \f( ) ( 1dx)1....
2
<e : L(4) g—L(2 4)40(6%) , (A.2-19b)
where
n (4)
(2,8) _ ("M M g i
L{&4) (f_m(m)( w1)w]dx>i , (A.2-19¢)

n
and we have used the symmetry property of Wi, w% ), etc., and the antisymmetry
of wi, w%3), etc.
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Similarly, we have

(i#j):

(5238350 ,6 = (a1 @106 = @5 >'-(2

so that combining (A.2-19b) and (A.2-20) in (A.2-18) yields specifically

Brl-mc 2

<91nc>1,e

3 *
Bn 1nc T

which now combined with (A.1-20a) for the bias B*

{Z Cogo )PP 12 <‘ L(#)s0(e )}

{2 (o102 (L{Y)- 2L(2) )s 2L {2l (2)]}

gives directly

n-inc
(Fn1.e = 109 »+ izj<e1.ej>2[L1§4)—2L1§2)2)61j+2L1.(2)L§2)]
= log u - Bﬁ inc °
cf. (A.1-20a).

- * i :
The H0 moment of Inc 18 found at once to be

where
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<91nc 0,0 n inc T % < j+£%61j o,o<?iea>

Eq. (A.2-7b),

(A.2-20)

(A.Z-Z]a)

(A.2-21b)

(A.2-22a)

(A.2-22b)

(A.2-23)



cosY. 2,01 - i ~ oy -
i=j): <?i+zi>o,o —./iw W w](xi)dxi = Wy =0, (A.2-24a)

G40): (oesdy = 0 (A1-13D),  (A.2-24b)

so that

(0.0 = Bi-inc = Ea- (A.1-20a) = Tog u + B¥ . (A.2-25)
We proceed similarly for var, eg$nc’ cf. (A.2-9). From (A.1-21)
specifically we write
s 217
-<F(x1- ,leei,eJ)],9<F(xk,x2|ek,ez)>]’e X (A.2-26)
where
F(X.i,lee.i,GJ- = (2/ Q/ R'.I(S.IJ <6_iej> . (A.2‘26a)
Let us consider the first average in (A.2-26). We haye
2
BRERIRTSEC SRS
-[] ury <62>+ 2 a0 >]> (A.2-27)
k™2 k 2-/1,0 ° :

k W1k

cf. (A.1-19). Me proceed as for (A.1-19) et seq. and dlStlﬂgUISh the following
terms [through 0(e 6) in (A.2-27), or equ1va1ent1y; through O(e ) in the
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coefficients of (b$>, etc.]:
(1).  (i#k):

o i) —

<<W]1 <w1k >> <f W:—:"w](xi'ei)dxi[w :: Wy (X, -0 k)dxk> (A.2-282)

)} Gw wp Mot 7+ Jaxg

.fww]k [w W, w ]dx>
» Wk Tl 2 k

<[o o+-— ( )>+ .1[0-0+ k<( “‘) ]>e

(9 >L(4) (4)+0(e ) (A.2-28b)

(2).  (i=k):

(,,) 2 (u) 2
<(ﬂ1_1;_)2>] OR &% Qﬁ’ﬁ_)3> b= L8 <_921_> e, (a2-20)

Wi ) 2 \Wi /o

where

. (u)
L§5) sf (::] )" dx, (A.2-29b)

-0 1

]
Next, let us consider the product terms J, = <z CH k ak2>] i
(where the prime, as before, indicates that terms j=1, etc., are om1tted
in the summat1ons), Let us rewrite J4 as
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B 1Jk2,<(] 1j )(1-8y,)a ij kz>] 6

Ny
]

<auak2)] o - 2 z(a” a5, ot z(an a3 )70 » (A.2-30a)

where a5 = (eiej)zizj, etc. Of fourth-order product. averages J4/4, we
have from the leading term of (A.2-30a):

(3) (1#1) ¢ (kta):

2
1

1 ky 1o 8
<f fwh 1\; (1 )( )[wh -03Wy it 7 Wit ]

<21 zazk%)] »0

-[wij-ejw%jt . ][w] k'ek‘”ikJ" . ][w1 z'ezwi ot ]dxi .. .dx£>6

0+ (o0, GQ)L(Z L(2), (2) L{Pao(s?) (A.2-30b)

which accordingly do not contribute 0(62), i.e. 0(96) in J, when we include

the <e eJ)@ eﬂ> factors in 3550 Ags etc. Of third-order products, 04/3,
we need to consider the first two terms of (A.2-30a), where now

(4). (i#j)s(k#2): (a). and k=i, or 2=i, or k=j, or 2=j, .+ 4x(k=1) contributions

. 1#§#2

1#3#2
PR PR (3525, CRETAN (A.2-30c)

ije 132

.jgzl«ﬁh <“j>1 () o [46; ej><ezei>-2<e1?><e£ej\)]. (A.2-30d)



Now

<<“1?>1<”j>1<"z>1>e =<[ f( h) ( m)["‘h O]

“[w W1 Jw1 oo Il -6 W) o+ Jdxgdxy dx>
- 0+L1§2)<eje£)L§.2)L§2)+0(;T) , (A.2-31)
so that J4/3 becomes
Ja3 = 1§2 L1§2)LJ('2)LI§2)[4<61'ej><ej62,><e£ei>-2<61?>(éj62>2]‘ (A.2-31a)

For second-order products J4/2 we have directly from J4 as a whole:

(b) i=k;j=2:
<2$2§>]’6x2

i=e3j=k: (i#jsk#e)

2

® .2 W, 2 e
2 _ "14,¢ i
<21'QJ?>X2 - 2<[m":[(w_]_1.') (wij) [w11"61'w11+2_'w11+ -]

2
Dﬁ -0 w + —J-w" +. . Jdx. dx'>e

)
= 2L1§2)L§2)+L§2)L§2’2)<9§>+L§Z)L,§2’2)<61?>+0(6 ) (A.2-32)
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o=} RORCIORRCE: 1 (5o DL Rhoe®) L (a.2-320)

In addition to the sets of terms (1)-(4) in the product (A.2-27) there
are also the following:

(5). w
] K £>] o ° k#a: i=k, or i=t; or ifkfe:
[(x2): for (i#j): k=1, or k=j, or k#i#j:] (A.2-33)
We have
(5a) k#a: i=k:

<‘”'1'1 L) <f f"‘i1 i W1g w ]
Wy 2/ 1,0 W14 w]i w] W19

°[w]2-ezwi£+..]dxl..dx;>e (A.2-34a)

w 2
- 11 lz
= 0"(9 >f f Wh ‘”u) Wy Wy dx;dx +0(e 4

- 0+ {2220 (5.6 Va0 (6™ (A.2-34b)
(5b). k#g: i=a:
w —_—
14 _ oy (2,2),(2) 4 i -
<wh 2 ’“k>1,e = O+ Ly <e1.ek)+0(e ) , similarly. (A.2-35)
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(5c). k#a: igk(#2):

02

]1 <f ]'I ]2 ]k 1 1 n
% [Wys=0.W1 .t 5— Wi +...]
Wy k /1,6 Was w]z 1k 11 1711 2 14

-[w]k-ekw]'kt.][wu-ekw]'f..]dxidxkdxz‘>e

L(4)

=0 + —— (e & R>Ll(<2)[_2('2) = 0+0(BI) . (A2—36)

From (A.2-33) we repeat the above, equivalent to multiplying by a
factor 2 in the relevant summations.
Combining the results of (1)-(5) for the average (A.2-27) then yields:

2. (4) . (2)2 2), (2
1sz<%13 e ° g%<§iej> [(Lg )_ng ) )aij+2L§ )Lg )

23
(85 (6) ., v /.2 2, (2),(2,2)
+ Z —— Ly /46 izj <e1.><eiej> Lj :

i

(i#] #k) (
+ 2 L}
ijk

2)L§2)Lé2)[4<?iej§<?jeé><§kei>

- 2<p§><§jeé>2]+0(g§5 . (A.2-37)

Froh the above it is seen directly that

2
i} 20, (4 2 2),(2)7 _  ofs
<fiijz>o,o - g%<?1ej [(Lg )'2L§ ) )aij+2L§ ) ( )] - 'BBn -inc?

cf. (A.1-20a). (A.2-38)
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From (A.2-19b), (A.2-20) we obtain

1Jk£<F1J>'| 0 <sz 1,6

2, (2), (2) 2, (2), (2)
0+ (030 L1137 (1-8) 0+ (0,0 L =L (1-8, )
- ) 00 (a8
- Z < 2>2 z 2\2 '0+0(9 )’
R i (8)g kel GR° (4
L O+———1L; 7’8
'IJ 2 k ke (A.2-39)
so that this average is always ignorable [0(66)] in (A.2-26).
Accordingly, applying (A.2-37) - (A.2-39) to (A.2-26) gives us
0*2 = var, ,g% ZB*
1-inc ~ 1,6%inc n-inc
o o¥l, a2 [z var. _g* cf. (A.2-38)] -
T-inc = %-inc L7 0,0%nc * ¢T+ A (A.2-40)
This Tast relation, viz. o¥2, 2 0*2. » a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>